Get Answers to all your Questions

header-bg qa

Provide solution RD Sharma maths class 12 chapter 12 Derivative as a Rate Measure exercise case study based question, question 2 sub question 1 maths textbook solution

Answers (2)

Answer:

24cm^{2}/\sec

Hint:

 Here we use concept of cube

Given:

 Length= 10 cm

Total surface area of cube\left ( A \right )=6a^{2}

Differentiate it

                                                                                                 \begin{array}{r} \frac{d A}{d t}=12 a \frac{d a}{d t} \\ \end{array}

               \begin{array}{r} =12 \times 10 \times 0.2 \quad \text { since } \frac{d a}{d t}=0.2 \\ \end{array}

              \begin{array}{r} =24 \mathrm{~cm}^{2} / \mathrm{sec} \end{array}

Posted by

Infoexpert

View full answer

Answer:

24cm^{2}/\sec

Hint:

 Here we use concept of cube

Given:

 Length= 10 cm

Total surface area of cube\left ( A \right )=6a^{2}

Differentiate it

                                                                                                 \begin{array}{r} \frac{d A}{d t}=12 a \frac{d a}{d t} \\ \end{array}

               \begin{array}{r} =12 \times 10 \times 0.2 \quad \text { since } \frac{d a}{d t}=0.2 \\ \end{array}

              \begin{array}{r} =24 \mathrm{~cm}^{2} / \mathrm{sec} \end{array}

Posted by

Infoexpert

View full answer