Get Answers to all your Questions

header-bg qa

Provide solution RD Sharma maths class 12 chapter maxima and minima exercise 17.2 question 9 maths textbook solution

Answers (1)

Answer:

There  is no   local maxima and  local minima of f\left ( x \right ) at interval (0,π)

Hint:

Use first derivative test to find the point and value of local maxima or local minima.

Given:

f(x)=\operatorname{Cos} x \quad 0<x<\pi

Solution:

f(x)=\operatorname{Cos} x  

Differentiating  f\left ( x \right )with respect to ‘x’ then,

\begin{aligned} &\frac{d}{d x}\{f(x)\}=\frac{d}{d x} \operatorname{Cos} x \\ &\because f^{\prime}(x)=-\sin x\left[\because \frac{d(\cos x)}{d x}=-\sin x\right] \end{aligned}

By first derivative test, for local maxima or local minima ,we have

\begin{aligned} &f^{\prime}(x)=0 \\ &\Rightarrow-\sin x=0 \Rightarrow \operatorname{Sin} x=0 \\ &\Rightarrow x=n \pi \quad ; \mathrm{n} \in \mathbb{Z} \\ &\Rightarrow \mathrm{x}=0, \pi,-\pi, 2 \pi,-2 \pi \ldots . \end{aligned}

But these points of x lies outside the interval (0,π)

So there is no local maxima and minima will exist in the interval (0,π)

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads