Get Answers to all your Questions

header-bg qa

If \alpha and \beta are roots of the equation, x^{2}-4\sqrt{2}kx+2e^{4ln\: k}-1=0 for some k

and \alpha ^{2}+\beta ^{2}=66 then \alpha ^{3}+\beta ^{3} is equal to:

  • Option 1)

    248\sqrt{2}

  • Option 2)

    280\sqrt{2}

  • Option 3)

    -32\sqrt{2}

  • Option 4)

    -280\sqrt{2}

 

Answers (2)

best_answer

As we have learned

Sum of Roots in Quadratic Equation -

\alpha +\beta = \frac{-b}{a}

- wherein

\alpha \: and\beta are root of quadratic equation

ax^{2}+bx+c=0

a,b,c\in C

 

 

Product of Roots in Quadratic Equation -

\alpha \beta = \frac{c}{a}

- wherein

\alpha \: and\ \beta are roots of quadratic equation:

ax^{2}+bx+c=0

a,b,c\in C

 

 x^2-4\sqrt2kx+2e^{lnk^4}-1= 0

\Rightarrow x^2-4\sqrt2kx+2k^4-1=0

\alpha +\beta = 4\sqrt2 k  and 

\alpha\beta =2k^4-1

Now , \alpha ^2+\beta ^2= (\alpha +\beta )^{2}-2\alpha \beta

\Rightarrow 66= 32k^2-4 k^4+2

\Rightarrow 4k^4-32k^2+64 = 0

\Rightarrow k^4-8k^2+16 = 0

\Rightarrow (k^2-4)^= 0

\Rightarrow k= \pm 2  

k= 2 acceptable for ln k to be definite 

\therefore \alpha ^2+\beta ^2= (\alpha +\beta )^3-3\alpha \beta (\alpha +\beta )= (4\sqrt2 \times 2)^3-3(32-1)(4\sqrt2\times 2)= 1024 \sqrt2- 744\sqrt2= 280 \sqrt 2

 

 

 

 


Option 1)

248\sqrt{2}

Option 2)

280\sqrt{2}

Option 3)

-32\sqrt{2}

Option 4)

-280\sqrt{2}

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE