Get Answers to all your Questions

header-bg qa

Let f(x) = \sin |x| -|x| ,   then at x= 0  , f(x) is 

  • Option 1)

    Both continous and diffrentiable 

  • Option 2)

     continous but non diffrentiable 

  • Option 3)

    neither continous nor diffrentiable 

  • Option 4)

    discontinous but  diffrentiable 

 

Answers (1)

best_answer

As we have learned 

 

Condition for differentiable -

 

A function  f(x) is said to be differentiable at  x=x_{\circ }  if   Rf'(x_{\circ })\:\:and\:\:Lf'(x_{\circ })   both exist and are equal otherwise non differentiable

-

 

 for continuty \rightarrow

\lim_{x\rightarrow 0^{-}} \sin |x|-|x| = \lim_{x\rightarrow 0^{+}}\sin |x| -|x| = f(0)=0

f(x) is continous at x=0 

 For diffrentiability 

LHD= \lim_{h\rightarrow 0^{+}}\frac{f(0-h)-f(0)}{-h} =\lim_{h\rightarrow 0^{+}}\frac{\sin |h|-|h|-0}{-h }

=-\lim_{h\rightarrow 0^{+}}\frac{\sin h-h-0}{h }= -\lim_{h\rightarrow 0^{+}}\left ( \frac{\sin h}{h}-\frac{h}{h} \right )= -(1-1)=0

 

RHD= \lim_{h\rightarrow 0^{+}}\frac{f(0-h)-f(0)}{h} =\lim_{h\rightarrow 0^{+}}\frac{\sin |h|-|h|-0}{h }

 

=-\lim_{h\rightarrow 0^{+}}\frac{\sin h-h-0}{h }= \lim_{h\rightarrow 0^{+}}\left ( \frac{\sin h}{h}-\frac{h}{h} \right )= (1-1)=0

LHD=RHD so f(x) is diffrentiable at x =0

 

 


Option 1)

Both continous and diffrentiable 

Option 2)

 continous but non diffrentiable 

Option 3)

neither continous nor diffrentiable 

Option 4)

discontinous but  diffrentiable 

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE