Get Answers to all your Questions

header-bg qa

If three coterminous edges of a parallelopiped is to have lengths equal to 3, 4, 5 units then maximum possible volume of such parallelopiped is:

Option: 1

20


Option: 2

40


Option: 3

60


Option: 4

80


Answers (1)

best_answer

As we learn

Volume of parallelopiped -

fig 9

- wherein

\vec{a}\vec{b} and \vec{c} are the three edges if Parallelepiped. Volume = abc\cos \alpha \sin \theta

 

 Volume of Parallelepiped =\left | \vec{a} \right |\left | \vec{b} \right |\left | \vec{c} \right |cos\alpha sin\Theta

It will be maximum when cos\alpha=1 \ and\ sin\Theta = 1

\therefore maximum volume = 3*4*5

 

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions