Get Answers to all your Questions

header-bg qa

Two electrons are moving with non-relativistic speeds perpendicular to each other. If corresponding de Broglie wavelengths are λ1 and λ2, their de Broglie wavelength in the frame of reference attached to their centre of mass is :

  • Option 1)

    \lambda_{CM}=\lambda _{1}=\lambda _{2}

     

     

     

  • Option 2)

    \lambda_{CM}=\frac{2\lambda _{1}\lambda _{2}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}

  • Option 3)

    \frac{1}{\lambda_{CM}}= \frac{1}{\lambda _{1}}+\frac{1}{\lambda_{2}}

  • Option 4)

    \lambda _{CM}=\left ( \frac{\lambda_{1}+\lambda_{2}}{2} \right )

Answers (2)

As we learned

 

De - Broglie wavelength -

\lambda = \frac{h}{p}= \frac{h}{mv}= \frac{h}{\sqrt{2mE}}

- wherein

h= plank's\: constant

m= mass \: of\: particle

v= speed \: of\: the \: particle

E= Kinetic \: energy \: of \: particle

 

 p_{1} = \frac{h}{\lambda _{1}}\hat{i}, p_{2}=\frac{h}{\lambda _{2}}\hat{j}

\vec{V_{cm}}=\frac{\vec{p_{1}}+\vec{p_{2}}}{M}=\frac{h}{2m\lambda _{1}}\hat{i}+\frac{h}{2m\lambda }\hat{j}

velocity of first electron about centre of mass

\vec{V}_{cm}=\vec{V}_{1}-\vec{V}_{cm}=\frac{\lambda }{m\lambda _{1}}\hat{i}-\left [ \frac{h}{2m\lambda _{1}}\hat{i} +\frac{h}{2m\lambda _{2}} \hat{j}\right ]

= \frac{h}{2m\lambda _{1}}\hat{i} -\frac{h}{2m\lambda _{2}} \hat{j}

\Rightarrow\lambda _{cm}= \frac{h}{\sqrt{\frac{h^{2}}{4\lambda {_{1}}^{2}}+\frac{h^{2}}{4\lambda {_{2}}^{2}}}}\Rightarrow\lambda _{cm}= \frac{2\lambda _{1}\lambda _{2}}{\sqrt{\lambda _{1}^{2}+\lambda _{2}^{2}}}

 


Option 1)

\lambda_{CM}=\lambda _{1}=\lambda _{2}

 

 

 

Option 2)

\lambda_{CM}=\frac{2\lambda _{1}\lambda _{2}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}

Option 3)

\frac{1}{\lambda_{CM}}= \frac{1}{\lambda _{1}}+\frac{1}{\lambda_{2}}

Option 4)

\lambda _{CM}=\left ( \frac{\lambda_{1}+\lambda_{2}}{2} \right )

Posted by

subam

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE