In Figure, D and E are points on side BC of a ABC such that BD = CE and AD = AE. Show that
ABD
ACE.
Given, ABC is triangle
BD = CE and AD = AE
Where D and E are points an side BC respectively
To prove: ABD
ACE
Proof :- AD = AE (Given)
Then ADE is an isosceles triangle.
We know that if two sides of a given triangle are equal then their opposite angles are also equal.
then, ADE =
AED = q
Now from ADB and
AEC
ADB = 180° –
ADE .....(1)
and AEC = 180° –
AED .....(2)
ADB = 180° – q,
AEC = 180° – q
Then by SAS criterion of congruence
AD = AE (given)
ADE =
AEC (from above)
BD = EC (given)
Þ ABD
ACE.
Hence proved.