Get Answers to all your Questions

header-bg qa

A and B working together can do a work in 6 days. If A takes 5 days less than B to finish the work, in how many days B alone can do the work 

 

 
 
 
 
 

Answers (1)

A and B complete the work in 6 days.

\rightarrow Let B do the work in  x days.

A do the work in  (x-5) days.

\rightarrow Let the total work be W units.

\rightarrow \text{A and B complete work in one day}=\frac{W}{6}

\rightarrow \text{B's one day work}=\frac{W}{x}

\rightarrow \text{A's one day work}=\frac{W}{x-5}

\Rightarrow \frac{W}{x}+\frac{W}{x-5}=\frac{W}{6}

\Rightarrow \frac{1}{x}+\frac{1}{x-5}=\frac{1}{6}      (cancelling common W)

\Rightarrow \frac{x-5+x}{x(x-5)}=\frac{1}{6}         (Taking LCM )

\Rightarrow (2x-5)6=x(x-5)

\Rightarrow 12x-30=x^2-5x

\Rightarrow x^2-5x-12x+30=0

\Rightarrow x(x-15)-2(x-15)=0

\Rightarrow (x-15)(x-2)=0

\Rightarrow x=2    OR    x=15

x \neq 2  because otherwise, A's work has no meaning 

\therefore x=15

Hence B takes 15 days to complete the work.

Posted by

Safeer PP

View full answer