Get Answers to all your Questions

header-bg qa

Find all the zeroes of the polynomialx^{4}+x^{3}-14x^{2}-2x+24,, if two of its zeroes are \sqrt{2} and -\sqrt{2}.

 

 
 
 
 
 

Answers (1)

Given, polynomial P(x)=x^{4}+x^{3}-14x^{2}-2x+24

The zeroes are \sqrt{2} & -\sqrt{2}

We have to find there two zeroes of the P(x).

If \sqrt{2}  & -\sqrt{2} are zeroes then (x+\sqrt{2}) & (x-\sqrt{2}) must be a factor of P(x).

\Rightarrow dividing P(x) by (x-\sqrt{2}) (x+\sqrt{2}) OR (x^{2}-2)

 

\Rightarrow Hence P(x) could be written as \Rightarrow p(x)=(x^{2}-2)(x^{2}+x-12)

 

Finding zeroes of x^{2}+x-12

\Rightarrow x^{2}+(4-3)x-12

\Rightarrow x^{2}+4x-3x-12\Rightarrow x(x+4)-3(x+4)

\Rightarrow (x-3)(x+4)

Other zeroes are +3,-4

Hence all zeroes of P(x) are =-\sqrt{2},\sqrt{2},3,-4

Posted by

Safeer PP

View full answer