Get Answers to all your Questions

header-bg qa

Find the equations of the tangent and the normal, to the curve 16x^{2}+9y^{2}= 145 at the point \left ( x_{1},y_{1} \right ), where x_{1}= 2\, and\: y_{1}> 0\cdot

 

 

 

 
 
 
 
 

Answers (1)

given curve is 16x^{2}+9y^{2}= 145---(i)
\because \left ( x_{1},y_{1} \right ) lies on equation ---(i)
\therefore 16x_{1}^{2}+9y_{1}^{2}= 145
\Rightarrow 16\left ( 2 \right )^{2}+9y_{1}^{2}= 145\; \; \left [ \because x_{1} = 2\left ( given \right )\right ]
\Rightarrow 9y_{1}^{2}= 145-64= 81
\Rightarrow y_{1}= 3\; \; \left [ \because y_{1} \geq 0\left ( given \right )\right ]
\therefore point of containt is (2,3)
Differentiating equation (1) w.r.t x, which will give us the slope of the tangent
32x+18y\: \: \frac{dy}{dx}= 0
\Rightarrow \frac{dy}{dx}= \frac{-32x}{18y}
Slope of the tangent at (2,3) = \left [ \frac{dy}{dx} \right ]_{\left ( 2,3 \right )}
                                         =\frac{-32\left ( 2 \right )}{18\left ( 3 \right )}= \frac{-64}{54}
                                         = \frac{-32}{27}
\therefore Equation of tangent is
y-3= m\left ( x-2 \right )
\Rightarrow y-3= \frac{-32}{27}\left ( x-2 \right )
\Rightarrow27y-81= -32x+64
\Rightarrow32x+27y= 145
The slope of the normal = \frac{-1}{slope\; of\; tangent}
\therefore  Equation of normal is
\Rightarrow y-3= \frac{27}{32}\left ( x-2 \right )
\Rightarrow 32y-96= 27x-54
\Rightarrow 27x-32y= -42

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads