Get Answers to all your Questions

header-bg qa

Find the vector equation of the line passing through the point (2,3,-1) and parallel to the planes \vec{r}\cdot \left ( 3\hat{i}+4\hat{j}+2\hat{k} \right )= 5 and \vec{r}\cdot \left ( 3\hat{i}-2\hat{j}-2\hat{k} \right )= 4.

 

 

 

 
 
 
 
 

Answers (1)

Suppose the required line is parallel to the vector \vec{b} which is given by \vec{b}= b_{1}\hat{i}+b_{2}\hat{j}+b_{3}\hat{k}
The position vector of the points is (2,3,-1) is \vec{a}= 2\hat{i}+3\hat{j}-\hat{k}\left
The equation of the line passing through (2,3,-1) & parallel to \vec{b}  is given as \vec{r}= \vec{a}+\lambda \vec{b}
\vec{r}=\left ( 2\hat{i}+3\hat{j}-\hat{k} \right )+\lambda \left ( b_{1}\hat{i}+b_{2}\hat{j}+b_{3}\hat{k} \right )---(1)
The equations of the given plane are
\vec{r}\cdot \left ( 3\hat{i}+4\hat{j}+2\hat{k} \right )= 5---(2)
&
\vec{r}\cdot \left ( 3\hat{i}-2\hat{j}-2\hat{k} \right )= 4---(3)
The line in equation (1) & plane in equation (2) are parallel
\therefore The normal to plane in equation (2) and the given line are perpendiculars
\therefore = \left ( 3\hat{i}+4\hat{j}+2\hat{k} \right )\cdot \lambda \left ( b_{1}\hat{i}+b_{2}\hat{j}+b_{3} \hat{k}\right )= 0
\Rightarrow \lambda \left ( 3b_{1}+4b_{2}+2b_{3} \right )= 0
\Rightarrow 3b_{1}+4b_{2}+2b_{3}= 0---(4)
similarly, from equation (1) & (3) we get
\left ( 3\hat{i}-2\hat{j}-2\hat{k} \right )\lambda \left ( b_{1}\hat{i}+ b_{2}\hat{j}+ b_{3}\hat{k} \right )= 0
\Rightarrow \lambda \left ( 3b_{1}-2b_{2}-2b_{3} \right )= 0
\Rightarrow 3b_{1}-2b_{2}-2b_{3} = 0---(5)
from equation (4) & (5) we get
\frac{b_{1}}{4\left ( -2 \right )-\left ( -2 \right )\left ( 2 \right )}= \frac{b_{2}}{3\left ( -2 \right )-3\left ( 2 \right )}= \frac{b_{3}}{3\left ( -2 \right )-3\times 4}
\frac{b_{1}}{-4}= \frac{b_{2}}{-12}= \frac{b_{3}}{-18}
\therefore The direction ratios of \vec{b} are -4,-12,-18
\therefore \vec{b}= -4\hat{i}-12\hat{j}-18\hat{k}\: \left [ \because \vec{b}= b_{1}\hat{i}+b_{2}\hat{j}+b_{3}\hat{k} \right ]
On substituting the value of \vec{b}  in equation (1) we get
\vec{r}= \left ( 2\hat{i} +3\hat{j}-\hat{k}\right )+\lambda \left (-4\hat{i} -12\hat{j}-18\hat{k} \right ) which is the required solution and required equation of the line.

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads