Get Answers to all your Questions

header-bg qa

Given that \sqrt 3  is an irrational number, prove that (2+\sqrt 3 ) is an irrational number

 

 

Answers (1)

Let (2+\sqrt 3 ) is a rational number 

2 + \sqrt 3 = a/b \\\\ \sqrt 3 = a/b -2 \\\\ \sqrt 3 \neq \frac{a-2b}{b}

Here \sqrt 3 is an irrational number so our assumption is wrong hence (2+\sqrt 3 ) is an irrational number 

Posted by

Safeer PP

View full answer