Get Answers to all your Questions

header-bg qa

Let A= N\times N be the set of all ordered pairs of natural numbers and R be
the relation on the set A defined by (a, b) R (c, d) iff ad = bc. Show that R
is an equivalence relation.

 

 

 

 
 
 
 
 

Answers (1)

(i) Reflexive:  \left ( \left ( a,b \right ) ,\left ( a,b \right )\right )\epsilon R
ab = ba
\therefore \left ( \left ( a,b \right ),\left ( a,b \right ) \right )\epsilon R\Rightarrow R is reflexive
(ii) Symmetric: (a,b),\left ( c,d \right )\epsilon R\Rightarrow \left ( \left ( c,d \right ),\left ( a,b \right ) \right )\epsilon R
let \left ( \left ( a,b \right )\left ( c,d \right ) \right )\epsilon R
Let \left ( \left ( a,b \right )\left ( c,d \right ) \right )\epsilon R 
Toprove  \left ( \left ( c,d \right )\left ( a,b \right ) \right )\epsilon R  ie  cb = da
Proof : ad= bc\Rightarrow bc= ad
ie cb= da
\therefore \left ( \left ( c,d \right ),\left ( a,b \right ) \right )\epsilon R\: \Rightarrow R is symmetric.
(iii) Transitive: \left ( \left ( a,b \right ),\left ( c,d \right )\epsilon R \right ),\left ( \left ( c,d \right ),\left ( e,f \right ) \right )\epsilon R 
      \Rightarrow \left ( \left ( a,b \right ) ,\left ( e,f \right )\right )\epsilon R
Let \left ( \left ( a,b \right ),\left ( c,d \right ) \right )\epsilon R & \left ( \left ( c,d \right ),\left ( e,f \right ) \right )\epsilon R
Toprove \left ( \left ( a,b \right ),\left ( e,f \right ) \right )\epsilon R \: \: ie\: af= be
Proof : ad= bc---(1)\: \: cf= de---(2)

           muliplying eq (1) & (2)
    a\not{d}\not{c}f= b\not{c}\not{d}e
\therefore af= be
Hence \left ( \left ( a,b \right ),\left ( e,f \right ) \right )\epsilon R\Rightarrow  R is Transitive
Since the relation is reflexive, symmetric & transitive
Hence R is an equivalence relation.

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads