Get Answers to all your Questions

header-bg qa

Let A= \left \{ x\, \epsilon \, Z:0\leq x\leq 12 \right \}\cdotShow that R= \left \{ \left ( a,b \right ):a,b\, \epsilon \, A,\left | a-b \, is \: divisible\: by\: 4 \right | \right \} is an equivalence relation.
Find the set of all elements related to 1. Also write the equivalence
class [2].

 

 

 

 
 
 
 
 

Answers (1)

given R= \left \{ \left ( a,b \right ):a,b\, \epsilon \, A,\left | a-b \, is \: divisible\: by\: 4 \right | \right \}
Reflexivily: For any a\, \epsilon \, A
        \left | a-a \right |= 0  which is divisible by 4
       \left ( a,Q \right )\epsilon R\; so\:  R is reflexive
Symmetricly: Let \left ( a,b \right )\epsilon\, R
\Rightarrow \left | a-b \right | is divisible by 4
\Rightarrow \left | b-a \right | is divisible by 4 \left [ \because \left | a-b \right | = \left | b-a \right |\right ]
\Rightarrow \left ( b,a \right )\, \epsilon \, R
So, R is symmetric.
Transitive: Let \left ( a,b \right )\, \epsilon \, R  and \left ( b,c \right )\, \epsilon \, R
  \Rightarrow \left | a-b \right |  is divisible by 4
  \Rightarrow \left | a-b \right |  = 4 k
\therefore a-b= \pm 4k,k\,\, \epsilon \, z---(i)
Also \left | b-c \right | is divisible by 4
\Rightarrow \left | b-c \right |= 4m
\therefore \therefore b-c= \pm 4m.m\, \epsilon\, z---(ii)
Adding equations (i) and  (ii)
a-b+b-c= \pm 4\left ( k+m \right )
\Rightarrow a-c= \pm 4\left ( k+m \right )
\left | a-c \right |  is divisible by 4
\Rightarrow \left ( a,c \right )\, \epsilon \, R
so R is symmetric
\Rightarrow R is reflexive, symmetric and transitive
\therefore R is an equivalence relation
Let x be an element of R such that \left ( x,1 \right )\, \epsilon \, R
Then \left | x-1 \right | is divisible by 4
x-1= 0,4,8,12
\Rightarrow -x= 4,5,9\, \left ( \because x\leq 12 \right )
\therefore set of all elements of A which are related to {1,5,9}.
The equivalence class of 2 ie
\left [ 2 \right ]= \left \{ \left ( 2,2 \right ),a\, \epsilon A,\left | a-2 \right |\, is\, divisible \, by\, 4 \right \}
\Rightarrow \left | a-2 \right |= 4k\left ( K\, is\, a\, whole \, number,\, k\geq 3 \right )
\Rightarrow a= 2,6,10
\therefore equivalance class [2] is {2,6,10}

 

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads