Get Answers to all your Questions

header-bg qa

Using integration, find the area of the region in the first quadrant enclosed by the x-axis, the line y= x and the circle x^{2}+y^{2}= 32\cdot

 

 

 

 
 
 
 
 

Answers (1)

given curve is : x^{2}+y^{2}= 32---(i)
                   x^{2}+y^{2}= \left ( \sqrt{32} \right )^{2}= \left ( 4\sqrt{2} \right )^{2}
It is a circle with centre (0,0) and radius 4\sqrt{2}
given line is y= x---(ii)
solving equations (i) and (ii) for points of intersection
x^{2}+x^{2}= 32 \left [ using (ii) and (i) \right ]
\Rightarrow x^{2}= 16
\Rightarrow x= \pm 4
x= 4\, \, \left [ first\, quadrant \right ]
\therefore point of intersection is \left ( 4,4 \right )

Required area = Area OMA
                    = Area OMP + Area MPA.
= \int_{0}^{4}x\, dx+\int_{4}^{4\sqrt{2}}\sqrt{\left ( 4\sqrt{2} \right )^{2}-x^{2}\, }dx
= \left [ \frac{x^{2}}{2} \right ]^{4}_{0}+\left [ \frac{x}{2}\sqrt{\left ( 4\sqrt{2} \right )^{2}-x^{2}} +\frac{\left ( 4\sqrt{2} \right )^{2}}{2}\sin^{-1}\left ( \frac{x}{4\sqrt{2}} \right )\right ]^{4\sqrt{2}}_{4}
= \frac{16}{2}+\left [ \left \{ \frac{4\sqrt{2}}{2}\sqrt{\left ( 4\sqrt{2} \right )^{2}-\left ( 4\sqrt{2} \right ) ^{2}}+\frac{32}{2}\sin^{-1}1\right \} -\left \{ \frac{4}{2}\sqrt{\left ( 4\sqrt{2} \right )^{2}-\left ( 4 \right )^{2}}+\frac{32}{2} \sin^{-1}\frac{1}{\sqrt{2}}\right \}\right ]
= 8+\left ( 2\sqrt{2}\left ( 0 \right )+16\times \frac{\pi }{2} \right )-\left ( 2\times 4+16\times \frac{\pi }{4} \right )
= 8+8\pi -8-4\pi
=4\pi \, sq.units

                   

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads