Get Answers to all your Questions

header-bg qa

Q : 13       Find the modulus and argument of the complex number   \small \frac{1+2i}{1-3i}.
 

Answers (1)

best_answer

Let
z = \small \frac{1+2i}{1-3i}
Now, multiply the numerator and denominator by  (1+3i)

\Rightarrow z=\frac{1+2i}{1-3i}\times \frac{1+3i}{1+3i}= \frac{1+3i+2i+6i^2}{1^2-(3i)^2}= \frac{1+5i-6}{1-9i^2}= \frac{-5+5i}{10}= -\frac{1}{2}+i\frac{1}{2}
Therefore,
r\cos \theta= -\frac{1}{2} \ \ and \ \ r\sin \theta =\frac{1}{2}
Square and add both the sides 
r^2\cos^2\theta +r^2\sin^2\theta= \left ( -\frac{1}{2} \right )^2+\left ( \frac{1}{2} \right )^2
r^2(\cos^2\theta +\sin^2\theta)= \left ( \frac{1}{4} \right )+\left ( \frac{1}{4} \right )
r^2= \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because \sin^2\theta +\cos^2\theta = 1)
r = \frac{1}{\sqrt2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)
Therefore, the modulus is   \frac{1}{\sqrt2}
Now,
\frac{1}{\sqrt2} \cos\theta = -\frac{1}{2} \ \ and \ \ \frac{1}{\sqrt2} \sin\theta = \frac{1}{2}
\cos\theta = -\frac{1}{\sqrt2} \ \ and \ \ \sin\theta = \frac{1}{\sqrt2}
Since the value of  \cos\theta  is negative and the value of  \sin\theta  is positive  and we know that it is the case in  II quadrant
Therefore,
Argument =\left ( \pi-\frac{\pi}{4} \right )= \frac{3\pi}{4}

Therefore,  Argument and modulus are \frac{3\pi}{4} \ \ and \ \ \frac{1}{\sqrt2}  respectively

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads