Get Answers to all your Questions

header-bg qa

2. In Fig, sides AB and AC of \small \Delta ABC are extended to points P and Q respectively. Also, \small \angle PBC < \angle QCB. Show that \small AC> AB.

     

Answers (1)

best_answer

We are given  \small \angle PBC < \angle QCB                                                                       ......................(i)

Also,   \angle ABC\ +\ \angle PBC\ =\ 180^{\circ}                    (Linear pair of angles)          .....................(ii)

and  \angle ACB\ +\ \angle QCB\ =\ 180^{\circ}                       (Linear pair of angles)          .....................(iii)

From (i), (ii) and (iii) we can say that :  \angle ABC\ > \ \angle ACB

Thus   AC\ > AB   ( Sides opposite to the larger angle is larger.)

  

Posted by

Devendra Khairwa

View full answer