Get Answers to all your Questions

header-bg qa

 Q25  Integrate the functions \frac{1 }{ \cos ^2 x (1-\tan x )^2}

Answers (1)

best_answer

Given function  \frac{1 }{ \cos ^2 x (1-\tan x )^2},

or simplified as \frac{1 }{ \cos ^2 x (1-\tan x )^2} = \frac{\sec^2x}{(1-\tan x)^2}

Assume the (1-\tan x)=t

 \therefore -\sec^2xdx =dt

\implies \int \frac{\sec^2x}{(1-\tan x)^2}dx = \int\frac{-dt}{t^2}

= -\int t^{-2} dt

= \frac{1}{t} +C

Now, back substituted the value of t.

= \frac{1}{1-\tan x}+C

 where C is any constant value.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads