Get Answers to all your Questions

header-bg qa

Q9  Integrate the functions x\cos ^{ -1} x

Answers (1)

best_answer

Given function is
f(x)=x.\cos^{-1} x
We will use integration by parts method
\int x.\cos^{-1} xdx= \cos^{-1} x.\int xdx - \int(\frac{d(\cos^{-1} x)}{dx}.\int x dx)dx\\ \\ \int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}- \int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
Now, we need to integrate \int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}\cos^{-1}x+\cos^{-1}x \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C
Put this value in our equation
\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}

Therefore, the answer is  \frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads