Get Answers to all your Questions

header-bg qa

Q 20  Integrate the rational functions \frac{1}{x (x^4 -1)}

Answers (1)

best_answer

Given function \frac{1}{x (x^4 -1)}

So, we multiply numerator and denominator by x^3, to obtain

\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}

\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx

Now, putting x^4 = t

we get, 4x^3dx =dt

Taking x^2 = t \Rightarrow 2xdx=dt

\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}               

Partial fraction of above equation,

\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}

1= A(t-1)+Bt                                            ..............(1)                            

Now, substituting t = 0\ and\ t = 1 in equation (1), we get

A = -1\ and\ B=1

\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}

\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt

= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C

= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C

Back substituting the value of t,

=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads