Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Magnetic field in a plane electromagnetic wave is given by Expression for corresponding electric field will be : Where c is speed of light.    
Option: 1
Option: 2 
Option: 3
Option: 4 
 

View Full Answer(1)
Posted by

vishal kumar

Two reactions R1 and R2 have identical pre-exponential factors.  Activation energy of R1 exceeds that of R2 by 10 kJ mol−1.  If k1 and k2 are rate constants for reactions R1 and R2 respectively at 300 K, then ln(k2/k1) is equal to : (R=8.314 J mol−1K−1)  
Option: 1 6
Option: 2 4
Option: 3 8
Option: 4 12
 

K=Ae^{\frac{-Ea}{RT}}

\frac{K_{1}}{K_{2}}=e\left ( \frac{Ea_{1}-Ea_{2}}{RT} \right )

Taking log both the sides

ln\left ( \frac{K_{2}}{K_{1}} \right )=\frac{E_{a1}-E_{a2}}{RT}= \frac{10000}{8.314\times 300}=4

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

A proton with kinetic energy of 1MeV moves from south to north. It gets acceleration of 10^{12}m/s^2 by an applied magnetic field (west to east). The value of magnetic field ( in mT):  (Rest mass of a proton is 1.6\times 10^{-27}kg)
Option: 1 0.71
Option: 2 71
Option: 3 0.071
Option: 4 7.1
 

 

   \begin{array}{l}{\because \mathrm{K.E.}=1.6 \times 10^{-13}=\frac{1}{2} \times 1.6 \times 10^{-27} \mathrm{V}^{2}} \\ \\ {\mathrm{V}=\sqrt{2} \times 10^{7}} \\ \\ {\therefore \mathrm{Bqv}=\mathrm{ma}} \\ \\ {\mathrm{B}=\frac{1.6 \times 10^{-27} \times 10^{12}}{1.6 \times 10^{-19} \times \sqrt{2} \times 10^{7}}} \\ \\ {=0.71 \times 10^{-3} \mathrm{T}} \\ \\ {\text { so } 0.71 \mathrm{mT}}\end{array} 

So option (1) is correct

View Full Answer(1)
Posted by

vishal kumar

A small circular loop of conducting wire has radius a and carries current I. It is placed in a uniform magnetic field B perpendicular to its plane such that when it rotated slightly about its diameter and released, it starts performing simple harmonic motion of time period T. If the mass of the loop is m then :
Option: 1 T=\sqrt{\frac{\pi m}{IB}}      
Option: 2 T=\sqrt{\frac{\pi m}{2IB}}      
Option: 3   T=\sqrt{\frac{2m}{IB}}   
Option: 4 T=\sqrt{\frac{2\pi m}{IB}}
 

 

 

\tau =MB\sin \theta =I\alpha (using \; M=IA)

\Rightarrow \pi R^{2}IB\theta =\frac{mR^{2}}{2}\alpha \; (Using \ \alpha =-\omega ^{2}\theta )

\Rightarrow \omega =\sqrt{\frac{2\pi IB}{m}}=\frac{2\pi }{t}

\Rightarrow T =\sqrt{\frac{2\pi m}{IB}}

 

Hence the correct option is (4).

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

An electron gun is placed inside a long solenoid of radius R on its axis. The solenoid has n turns / length and carries a current I. The electron gun shoots an electron along the radius of the solenoid with speed \nu . If the electron does not hit the surface of the solenoid, maximum possible value of \nu is (all symbols have their standard meaning) :  
Option: 1 \frac{2e\mu _{0}nIR}{m}      
      
Option: 2 \frac{e\mu _{0}nIR}{2m}

Option: 3 \frac{e\mu _{0}nIR}{4m}

Option: 4 \frac{e\mu _{0}nIR}{m}
 

 

 

Malus's Law -

Malus's Law-

This law states that the intensity of the polarized light transmitted through the analyzer varies as the square of the cosine of the angle between the plane of transmission of the analyzer and the plane of the polarizer.

                                       

As, 

                                                    I=I_{0} \cos ^{2} \theta

 

output intensity is given by I=I_0Cos^2(\theta )

Initial output intensity=10% of I_0

I.e \frac{10I_0}{100}=I_0Cos^2(\theta )\Rightarrow \theta =71.57

Final output intensity=O

means new angle is 90^0

the angle by which the analyser needs to be rotated further is 90^0-\theta =18.4^0

 

So Option (3) is correct.

View Full Answer(2)
Posted by

Ritika Jonwal

A very long wire ABDMNDC is shown in figure carrying current I. AB and BC parts are straight , long and at right angle. At D wire forms  circular turn DMND of radius R . AB, BC parts are tangential to circular turn at N and D . Magnetic field at the centre of circle is :
Option: 1   \frac{\mu _{0}I}{2\pi R}\left ( \pi + \frac{1}{\sqrt{2}}\right )

Option: 2  \frac{\mu _{0}I}{2 R}

Option: 3 \frac{\mu _{0}I}{2\pi R}\left ( \pi + 1 \right )

Option: 4 \frac{\mu _{0}I}{2\pi R}\left ( \pi - \frac{1}{\sqrt{2}}\right )
 

 

 

As

Magnetic Field due to current in straight wire -

  B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\sin \phi_{1}+\sin \phi_{2}\right)   

  

So 

 

Magnitude of net magnetic field at O is

\\B_O=B_1+B_2+B_3\\=-\frac{\mu_0i}{4\pi R}(sin90-sin45)+\frac{\mu_0i}{4\pi R}(sin90+sin45)+\frac{\mu_0i}{2 R}\\=\frac{\mu_0i}{4\pi R}(\sqrt{2}+2\pi)

The direction of magnetic field due to first conductor ( in to the plane) is opposite to that of other two conductors (out of the plane).

Hence the correct option is (1)

View Full Answer(1)
Posted by

vishal kumar

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


A long, straight wire of radius 'a' carries a current distributed uniformly over its cross-section. The ratio of the magnetic fields due to the wire at distance \frac{a}{3} and 2a, respectively from the axis of the wire is:
Option: 1 \frac{3}{2}
Option: 2 2
Option: 3 \frac{2}{3}
Option: 4 \frac{1}{2}

 

 

 

 

B_A = \frac{\mu_0ir}{2\pi a^2} = \frac{\mu_0 i a}{\pi a^2 6} = \frac{\mu_0i}{6\pi a}

B_B = \frac{\mu_0i}{2\pi (2a)}

\frac{B_A}{B_B} = \frac{4}{6} = \frac{2}{3}

Hence the option correct option is (3).

View Full Answer(1)
Posted by

avinash.dongre

The electric fields of two plane electromagnetic plane waves in vacuum are given by \vec{E_1} = E_0\hat{j}\cos(\omega t - kx) and \vec{E_2} = E_0\hat{k}\cos(\omega t - ky) At t = 0, a particle of charge q is at origin with velocity \vec{v} = 0.8c\hat{j} (c is the speed of light in vacuum ). The instantaneous force experienced by the particle is:
Option: 1 E_0 q\left(0.8\hat{i} - \hat{j} + 0.4\hat{k} \right )
Option: 2 E_0 q\left(0.4\hat{i} - 3 \hat{j} + 0.8\hat{k} \right )
Option: 3  E_0 q\left(-0.8\hat{i} + \hat{j} + \hat{k} \right )
Option: 4 E_0 q\left(0.8\hat{i} + \hat{j} + 0.2\hat{k} \right )
  

 

 

 

 

 

Magnetic field vectors associated with this electromagnetic wave are given by

 

\overrightarrow{\mathrm{B}}_{1}=\frac{E_{0}}{\mathrm{c}} \hat{\mathrm{k}} \cos (\mathrm{k} \mathrm{x}-\omega \mathrm{t}) \ \ \& \ \ \overrightarrow{\mathrm{B}}_{2}=\frac{\mathrm{E}_{0}}{\mathrm{c}} \hat{\mathrm{i}} \cos (\mathrm{ky}-\omega \mathrm{t})

 

\vec{F} = q\vec{E} + q(\vec{V}\times \vec{B})

        = q(\vec{E_1}+ \vec{E_2}) + q\left (\vec{V}\times( \vec{B_1}+\vec{B_2})\right )

by putting the value of \vec{E_1}, \vec{E_2}, \vec{B_1} \ \& \ \vec{B_2}

The net Lorentz force on the charged particle is

\vec{F} = qE_0[0.8\cos(kx - \omega t )\hat{i} + \cos(kx -\omega t)\hat{j} + 0.2\cos(ky - \omega t)\hat{k}]

at t = 0 and at x = y = 0

\vec{F} = qE_0[0.8\hat{i} + \hat{j} + 0.2\hat{k}]

Hence the option correct option is (4).

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

A charged particle of mass 'm' and charge 'q' moving under the influence of uniform electric field E\hat{i} and a uniform magnetic field B\hat{k} follows a trajectory from point P to Q as shown in figure. The velocities at P and Q are respectively, v\hat{i} and -2v\hat{j}. Then which of the following statements (A, B, C, D) are the correct? (trajectory shown is schematic and not to scale) (A) E = \frac{3}{4}\left(\frac{mv^2}{qa} \right ) (B) Rate of work done by the electric field at P is \frac{3}{4}\left(\frac{mv^2}{a} \right ) (C) Rate of work done by both the fields at Q is Zero. (D) The difference between the magnitude of angular momentum of the particle at P and Q is 2mav
Option: 1  (A), (C), (D)
Option: 2  (A), (B), (C)
Option: 3  (A), (B), (C), (D)
Option: 4  (B), (C), (D)
 

A) by work-energy theorem

W_{mag} + W_{ele} = \frac{1}{2} m(2v)^2 - \frac{1}{2}m(v)^2

0 + qE_02a = \frac{3}{2}mv^2

E_0 = \frac{3}{4} \frac{mv^2}{qa}

(B) Rate of change of work done at A = power of electric force

                                                                   = qE_0V

                                                                    =\frac{3}{4}\frac{mv^3}{a}

(C) at Q, \frac{dw}{dt} = 0 for both forces

(D) \\\Delta\vec{L} = (-m(2v)(2a)\hat{k}) - (-mva\hat{k})\\|\Delta \vec{L} |= 3mva

 

Hence, the correct option is (2).

View Full Answer(1)
Posted by

avinash.dongre

A particle of mass 'm' and charge 'q' has an initial velocity \vec{v}=v_{0} \hat{j}   If an electric field \overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{i}  and magnetic field \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{i}  act on the particle, its speed will double after a time: 
Option: 1 \frac{\sqrt{3}mv_{0}}{qE_{0}}
 Option 2 \frac{{3}mv_{0}}{qE_{0}}
Option:3 \frac{\sqrt{2}mv_{0}}{qE_{0}}  
Option: 4\frac{{2}mv_{0}}{qE_{0}}

 

Initially \overrightarrow{\mathrm{v}}=\mathrm{v}_{0} \hat{\mathrm{j}}

As both electric and magnetic field is in the x-direction

And initial velocity is perpendicular to both electric and magnetic fields.

So particle will move in a helical motion

and magnitude of velocity does not change in the y–z plane

and Speed will be increased due to electric field only i.e in the x-direction

and finally, the speed of the particle becomes double the initial speed.

i.e \left(2 \mathrm{v}_{0}\right)^{2}=\mathrm{v}_{0}^{2}+\mathrm{v}_{\mathrm{x}}^{2} \quad ; \quad \mathrm{v}_{\mathrm{x}}=\sqrt{3} \mathrm{v}_{0}

And in x-direction F_x=qE\Rightarrow a_x=\frac{qE}{m}

So v_x=\sqrt{3} \mathrm{v}_{0}=0+\frac{\mathrm{qE}}{\mathrm{m}} \mathrm{t} ; \quad \mathrm{t}=\frac{\mathrm{mv}_{0} \sqrt{3}}{\mathrm{qE}}

Hence the correct option is (1). 

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img