Get Answers to all your Questions

header-bg qa

A circle passing through the point \mathrm{P}(\alpha . \beta) in the first quadrant touches the two coordinate axes at the points \mathrm{A}$ and $\mathrm{B}. The point \mathrm{P} is above the line \mathrm{AB}. The point \mathrm{Q} on the line segment A B is the foot of perpendicular from \mathrm{P} on \mathrm{AB} . If \mathrm{PQ} is equal to 11 units, then value of \alpha \beta is_________.

Option: 1

121


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer


Let equation of circle is (x-a)^{2}+(y-a)^{2}=a^{2}
which is passing through P(\alpha, \beta)
then (\alpha-a) 2+(\beta-a)^{2}=a^{2}
  \alpha^{2}+\beta^{2}-2 \alpha a-2 \beta \alpha+a^{2}=0

Here equation of A B is x+y=a

Let \mathrm{Q}\left(\alpha^{\prime}, \beta^{\prime}\right) be foot of perpendicular of \mathrm{P} on \mathrm{AB}

\frac{\alpha^{\prime}-\alpha}{1}=\frac{\beta^{\prime}-\beta}{1}=\frac{-(\alpha+\beta-\mathrm{a})}{2}
PQ^{2}=\left(\alpha^{\prime}-\alpha\right)+\left(\beta^{\prime}-\beta\right)=\frac{1}{4}(\alpha+\beta-a)^{2}+\frac{1}{4}(\alpha+\beta-a)^{2}
121=\frac{1}{2}(\alpha+\beta-\mathrm{a})^{2}
242=\alpha^{2}+\beta^{2}-2 \alpha a-2 \beta a+a^{2}+2 \alpha \beta
242=2 \alpha \beta
\Rightarrow \alpha \beta=121
 

Posted by

vinayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE