Get Answers to all your Questions

header-bg qa

A man drags a block of mass 10 kg on a rough horizontal surface. What minimum force (at some angle from horizontal )  he should apply just to move the block ( in N)(\mu =\frac{1}{\sqrt{3}}).

Option: 1

50


Option: 2

75


Option: 3

60


Option: 4

100


Answers (1)

best_answer

Given-

mass of the block, m=10kg

coefficient of friction \mathrm{ \mu=\frac{1}{\sqrt{3}}}

        

Let the applied force be P be applied at an angle α with the horizontal as shown in the figure above

Let the friction force on the block be F.

F.B.D of the block-

                  For vertical equilibrium,

               \\ \mathrm{R+Psin\alpha=mg}\\ \mathrm{\Rightarrow\therefore R=mg-Psin\alpha}

                 and for horizontal motion,

            \mathrm{Pcos\alpha\geq F\Rightarrow Pcos\alpha\geq \mu R}

          Substituting the value of R, we get:-

         \mathrm{Pcos\alpha\geq \mu(mg-Psin\alpha)}

             \mathrm{\Rightarrow P\geq \frac{\mu mg}{cos\alpha+\mu sin\alpha}}

              For the force P to be minimum \mathrm{\left ( cos\alpha+\mu sin\alpha \right )} must be maximum i.e.,

              \mathrm{\frac{\mathrm{d} }{\mathrm{d} \alpha}[cos\alpha+\mu sin\alpha]=0}

             \mathrm{\Rightarrow -sin\alpha+\mu cos\alpha=0}

            \mathrm{\therefore tan\alpha=\mu}

             \mathrm{\Rightarrow \alpha=tan^{-1}(\mu)}= angle of friction.

             i.e. For the minimum value of P, its angle from the horizontal should be

             equal to the angle of friction.

                   As \mathrm{tan\alpha=\mu} , so from the figure,

                 \mathrm{sin\alpha=\frac{\mu}{\sqrt{1+\mu^{2}}}} and \mathrm{cos\alpha=\frac{1}{\sqrt{1+\mu^{2}}}}

               By substituting these values,

            \mathrm{P\geq \frac{\mu mg}{\frac{1}{\sqrt{1+\mu^{2}}}+\frac{\mu^{2}}{\sqrt{1+\mu^{2}}}}}

              \mathrm{\Rightarrow P\geq \frac{\mu mg}{\sqrt{1+\mu^{2}}}}

                \mathrm{\therefore P_{min}=\frac{\mu mg}{\sqrt{1+\mu^{2}}}}

Substituting the values of \mathrm{\mu} anf m-

\mathrm{P_{min}=\frac{\frac{1}{\sqrt{3}}\times10\times10}{\sqrt{1+\frac{1}{3}}}}=50 N

Posted by

Irshad Anwar

View full answer