Get Answers to all your Questions

header-bg qa

A uniformly charged disc of radius \mathrm{R} having surface charge density \sigma is placed in the x y plane with its center at the origin. Find the electric field intensity along the z-axis at a distance Z from origin :

 
Option: 1 E=\frac{2 \varepsilon_{0}}{\sigma}\left(\frac{1}{\left(Z^{2}+R^{2}\right)^{1 / 2}}+Z\right)
Option: 2 E=\frac{\sigma}{2 \varepsilon_{0}}\left(1+\frac{Z}{\left(Z^{2}+R^{2}\right)^{1 / 2}}\right)
Option: 3 \mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{Z}{\left(Z^{2}+R^{2}\right)^{1 / 2}}\right)
Option: 4 \mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}\left(\frac{1}{\left(Z^{2}+R^{2}\right)}+\frac{1}{Z^{2}}\right)

Answers (1)

best_answer


E_{p}= \frac{\sigma }{2\varepsilon _{0}}\left ( 1-\frac{Z}{\sqrt{R^{2}+Z^{2}}} \right )
The correct option is (3)

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE