Get Answers to all your Questions

header-bg qa

S_1 and S_2 are two coherent sources of sound of frequency 260 \mathrm{kz}. They have no initial phase difference. The intensity at a point p due to s_1 is 6 I_0 and due to \mathrm{S}_2 is 8I_0. If the velocity of sound is 340 \mathrm{~m} / \mathrm{s} then the resultant intensity at P.

Option: 1

15.25\,I_0


Option: 2

15.45\,I_0


Option: 3

15.15\,I_0


Option: 4

15.35\,I_0


Answers (1)

best_answer

\lambda=\frac{V}{n}=\frac{340}{260}=\frac{34}{26}=\frac{17}{13}

\varphi=Phase difference

\varphi=\frac{2 \pi}{1} \times \Delta x\varphi=\frac{2 \pi}{\lambda} \times \Delta x

\varphi=\frac{2 \pi}{\lambda}(13-12)

\varphi=\frac{2 \pi}{\lambda} \times 1 \\

\varphi=\frac{2 \pi}{\lambda}

I=I_1+I_2+2 \sqrt{I_1 . I_2} \cdot \operatorname{Cos\varphi } \\

 I=6 I_0+8I_0+2 \sqrt{6I_0.8I_0} \cdot \operatorname{Cos} \frac{2 \pi}{\lambda} \\

I=14 I_0+2 \sqrt{48 I_0^2} \cdot Cos \frac{2 \pi}{\lambda} \\

I=14 I_0+2 I_0 \sqrt{48} \cdot\left(Cos \frac{2 \pi}{\frac{17}{13}}\right). \\

I=14 I_0+2 I_0 \times 4 \sqrt{3} \cdot \cos \frac{2 \times 13 \pi}{17} \\

I=14 I_0+8I_0 \sqrt{3} \cdot \operatorname{Cos} \frac{26 \pi}{17} \\

I=14 I_0+8 I_0 \times 1.732 \times 0.1046 \\

I=14 I_0+8 I_0 \times 0.1812 \\

I=14 I_0+1.45 I_0 \\

I=15.45I_0

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE