Get Answers to all your Questions

header-bg qa

A line with direction cosines proportional to 2, 1, 2 meets each of the lines x=y+a=z  and x+a=2y=2z. The co­ordinates of each of the points of intersection are given by

  • Option 1)

    (3a,2a,3a),(a,a,2a)

  • Option 2)

    (3a,2a,3a),(a,a,a)

  • Option 3)

    (3a,3a,3a),(a,a,a)

  • Option 4)

    (2a,3a,3a),(2a,a,a)

 

Answers (1)

best_answer

As we learnt in 

Direction Cosines -

i)    \sin^{2} \alpha+ \sin^{2} \beta+\sin^{2} \gamma= 2

ii)    If OP =r then the co-ordinates of P will be (lr,mr,nr)

iii)    Direction cosines of X-axis are (1,0,0)

iv)    Direction cosines of Y-axis are (0,1,0)

v)    Direction cosines of Z-axis are (0,0,1)

-

 

 

Cartesian eqution of a line -

The equation of a line passing through two points A\left ( x_{0},y_{0},z_{0} \right )and parallel to vector having direction ratios as \left ( a,b,c \right )is given by

\frac{x-x_{0}}{a}= \frac{y-y_{0}}{b}= \frac{z-z_{0}}{c}

The equation of a line passing through two points A\left ( x_{1},y_{1},z_{1} \right )\, and \, B\left ( x_{2},y_{2},z_{2} \right ) is given by

\frac{x-x_{1}}{x_{2}-x_{1}}= \frac{y-y}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}

- wherein

 

 L_{1}:\frac{x}{1}= \frac{y+a}{1}= \frac{z}{1}=k

 

Point is \left ( k,k-a,k \right )\, \, and \, \,point\, \, on \, \,L_{2}\, \,is \left ( 2l-a,l,l \right )\, \,where\, \, k\, \,and \, \,l\, \, are\, \,same\, \,constants.

Now DCs are proportional to (2, 1, 2)

 

So \frac{2l-a-k}{2}=\frac{l-k+a}{1}=\frac{l-k}{2}

On solving k=3a,\ l=a

We get points (3a,2a,3a) and (a,a,a).

 


Option 1)

(3a,2a,3a),(a,a,2a)

Incorrect Option

 

Option 2)

(3a,2a,3a),(a,a,a)

Correct Option

 

Option 3)

(3a,3a,3a),(a,a,a)

Incorrect Option

 

Option 4)

(2a,3a,3a),(2a,a,a)

Incorrect Option

 

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE