Get Answers to all your Questions

header-bg qa

Two particles A, B are moving on two concentric circles of radii R1 and R2 with equal angular speed \omega . At t = 0 , their positions and direction of motion are shown in the figure : 

The relative velocity \vec{v_{A}} - \vec{v_{B}} at t = \frac{\pi}{2\omega} is given by : 

  • Option 1)

    \omega \left ( R_{1} - R _{2} \right ) \hat{i} 

  • Option 2)

    \omega \left ( R_{2} - R _{1} \right ) \hat{i}

  • Option 3)

    \omega \left ( R_{1} + R _{2} \right ) \hat{i}

  • Option 4)

    -\omega \left ( R_{1} + R _{2} \right ) \hat{i}

Answers (1)

best_answer

 

Angular velocity -

 Denoted by \omega (omega)

S.I. units- Radian per second (rad s-1 )

\omega is a vector quantity

\omega-Rate of change of angular displacement.

\omega = \frac{\Theta }{t} or \omega = \frac{d\Theta }{dt}

- wherein

Fig. Shows angular velocity

 

So Wl = w

W0 = 0

So

\theta =w_{0}+w_{t}.t

\theta =wt = w\left ( \frac{2\pi}{2w} \right )= \frac{\pi }{2}

so after \theta =\frac{\pi }{2}

Position of A and B are shown in figure

V_{A} = wR_{1}\left ( -\widehat{i} \right )

V_{B} = wR_{2}\left ( -\widehat{i} \right )

V_{A}- V_{B} = wR_{1}\left ( -\widehat{i} \right ) - \left ( wR_{2}\left ( -\widehat{i} \right ) \right )=w\left ( R_{2}-R_{1} \right )\widehat{i}


Option 1)

\omega \left ( R_{1} - R _{2} \right ) \hat{i} 

Option 2)

\omega \left ( R_{2} - R _{1} \right ) \hat{i}

Option 3)

\omega \left ( R_{1} + R _{2} \right ) \hat{i}

Option 4)

-\omega \left ( R_{1} + R _{2} \right ) \hat{i}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE