Get Answers to all your Questions

header-bg qa

Evaluate the integral of tan^{6}x

Option: 1

\frac{tan^{5}x}{5}-\frac{tan^{3}}{3}x+tan\ x-x


Option: 2

\frac{tan^{5}x}{5}-\frac{tan^{3}}{3}x-tan\ x-x


Option: 3

-\frac{tan^{5}x}{5}-\frac{tan^{3}}{3}x-tan\ x-x


Option: 4

\frac{tan^{5}x}{5}+\frac{tan^{3}}{3}x+tan\ x+x


Answers (1)

best_answer

Given integral, 
\int tan^{6}x\ dx
Consider,
I_{n}=\int tan^{n}x\ dx
Using the reduction method,
Put n=6,
I_{6}=\int tan^{6}dx=\frac{tan^{5}x}{5}-I_{4}..........(1)
Put n=4,
I_{4}=\int tan^{4}dx=\frac{tan^{3}x}{3}-I_{2}.........(2)
Put n=2,
I_{2}=\int tan^{2}dx=\frac{tan\ x}{3}-I_{0}..........(3)
Put n=0,
I_{0}=\int tan^{0}dx=\int dx=x
Substitute x=I_{0} in equation \left ( 3 \right ) , 
I_{2}=tan\ x-x
Substitute the value of I_{2} in equation\left ( 2 \right ) ,
I_{4}=\frac{tan^{3}x}{3}-tan\ x+x
Substitute the value of I_{4} in equation \left ( 1 \right ) ,
I_{6}=\frac{tan^{5}x}{5}-\frac{tan^{3}}{3}x+tan\ x-x
Therefore,

\int tan^{6}x\ dx=\frac{tan^{5}x}{5}-\frac{tan^{3}}{3}x+tan\ x-x

Posted by

sudhir.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE