Get Answers to all your Questions

header-bg qa

Find the integral of \frac{e^{sin^{-1}x}}{\sqrt{1-x^{2}}}dx

Option: 1

-e^{sin^{-1}x}+C


Option: 2

e^{sin^{-1}x}+C


Option: 3

e^{sin^{-1}x}+C


Option: 4

e^{sin\ x}+C


Answers (1)

best_answer

Given integral,
\int\frac{e^{sin^{-1}x}}{\sqrt{1-x^{2}}}dx
Using the substitution method,
Let t = sin^{-1}x
Then,
\frac{1}{\sqrt{1-x^{2}}}dx=dt

Substituting the values in the given integral,
\int\frac{e^{sin^{-1}x}}{\sqrt{1-x^{2}}}dx=\int e^{t}dt
\int\frac{e^{sin^{-1}x}}{\sqrt{1-x^{2}}}dx=e^{t}+C
\int\frac{e^{sin^{-1}x}}{\sqrt{1-x^{2}}}dx=e^{sin^{-1}x}+C

 

Posted by

Nehul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE