Get Answers to all your Questions

header-bg qa

For a certain first  order reaction 32 % of the reactant is left after 570 s. The rate constant of this reaction is ________ \times 10^{-3}s^{-1}. (Round off to the Nearest Integer). [Given : log_{10}2=0.301,In\; 10=2.303]
Option: 1 2
Option: 2 -
Option: 3 -
Option: 4 -

Answers (1)

best_answer

We know, For 1st order reaction,

\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{A}_{0}\right]}{\left[\mathrm{A}_{\mathrm{t}}\right]}

Given

For a certain first order reaction 32% of the reactant is left after 570 s.

So, at t = 570 sec

\\\mathrm{[A_t]= 32%\ of\ [A_0]} \\\\ \mathrm{[A_t]= \frac{32}{100}\times [A_0]}

After putting the values-

\mathrm{\textup{K} =\frac{2.303}{570 \mathrm{\ sec}} \log \left(\frac{ [A_0]}{(32/100)\times [A_t]}\right)}\mathrm{\textup{K} =\frac{2.303}{570 \mathrm{\ sec}} \log \left(\frac{100}{32}\right)}

\mathrm{\textup{K} =1.999 \times 10^{-3} \mathrm{sec}^{-1}}

\mathrm{\textup{K} \approx 2 \times 10^{-3} \mathrm{sec}^{-1}}

Ans = 2

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE