Get Answers to all your Questions

header-bg qa

For a nucleus _{Z}^{A}\textrm{X} having mass number A and atomic number Z
A . The surface energy per nucleon (b_{s}) = -a_{1} A^{2/3}
B . The Coulomb contribution to the binding energy \mathrm{b}_{\mathrm{c}}=-\mathrm{a}_2 \frac{\mathrm{Z}(\mathrm{Z}-1)}{\mathrm{A}^{4 / 3}}
C. The volume energy b_{v}= a_{3}A
D. Decrease in the binding energy is proportional to surface area.
E . While estimating the surface energy, it is assumed that each nucleon interacts with 12 nucleons. (a_{1} , a_{2} and
a_{3} are constants)
Choose the most appropriate answer from the options given below:

Option: 1

B,C only


Option: 2

A, B, C, D only


Option: 3

B, C, E only


Option: 4

C, D only


Answers (1)

best_answer

               
The most appropriate answer is option \left ( 4 \right )

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE