Get Answers to all your Questions

header-bg qa

If the chord of contact of tangents from a point P to the parabola \mathrm{y^2=4 a x} touches the parabola \mathrm{x^2=4 b y}, then the locus of P is

Option: 1

a pair of straight lines
 


Option: 2

a circle
 


Option: 3

a hyperbola
 


Option: 4

a parabola


Answers (1)

best_answer

Let point P be \mathrm{(h, k).}

The chord of contact of \mathrm{P(h, k)} w.r.t. \mathrm{y^2=4 a x} is

\mathrm{ T \equiv k y-2 a(x+h)=0 }

Or \mathrm{\quad x=\frac{k}{2 a} y-h}                         \mathrm{..........(1)}

Any tangent to \mathrm{ x^2=4 b y} is

\mathrm{ x=m y+\frac{b}{m} }                            .........(2)
On comparing (1) and (2), we obtain

\mathrm{ m=\frac{k}{2 a} \text { and }-h=\frac{b}{m} }
On eliminating m,

\mathrm{ -\frac{b}{h}=\frac{k}{2 a} }

\therefore \quad  the locus of \mathrm{(h, k)} is

\mathrm{ x y=-2 a b }
which is the equation of rectangular hyperbola.

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE