Get Answers to all your Questions

header-bg qa

If the focus and vertex of a parabola are at (0,2) and (0,4) respectively, then the equation of the parabola is

Option: 1

\mathrm{x^2+8 y-32=0}


Option: 2

\mathrm{x^2-8 y+32=0}


Option: 3

\mathrm{y^2=-8 x+32}


Option: 4

\mathrm{x^2-8 y-32=0}


Answers (1)

best_answer

As vertex (0,4) and focus (0,2) lie on the y-axis and the vertex is above the focus, the curve lies on the third and fourth quadrants.

Distance between the vertex and the focus \mathrm{=4-2=2 \equiv a}

\mathrm{\therefore \quad} The equation of the directrix
\mathrm{\text { is } y=(y \text {-coordinate of vertex })+\frac{1}{4}(\mathrm{~L} \cdot \mathrm{R})}

                      \mathrm{\begin{aligned} & =4+a \\ & =4+2=6 \end{aligned}}

The directrix is \mathrm{y-6=0}

And, the focus is \mathrm{(0,2).}

If \mathrm{P\left(x_1, y_1\right)} is a point on the parabola, then by definition of a parabola,

               \mathrm{ \sqrt{\left(x_1-0\right)^2+\left(y_1-2\right)^2}=\frac{y_1-6}{\sqrt{1}} }
      Or  \mathrm{\quad x_1^2+\left(y_1-2\right)^2=\left(y_1-6\right)^2}

\mathrm{\therefore \quad \text { The locus of } P\left(x_1, y_1\right) \text { is }}

\mathrm{ x^2+(y-2)^2=(y-6)^2 }

\mathrm{\text { Or } \quad x^2=-8 y+32}

The answer is (a) 

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE