Get Answers to all your Questions

header-bg qa

\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \cos t^2 d t}{x \sin x}=\ldots \ldots

 

Option: 1

0


Option: 2

1


Option: 3

-1

 


Option: 4

2


Answers (1)

best_answer

\text { Form }\left(\frac{0}{0}\right)

Applying L' Hospital's rule 

Then           \lim _{x \rightarrow 0} \frac{\cos x^4 \cdot 2 x}{x \cos x+\sin x \cdot 1}

                   \begin{aligned} & =\lim _{x \rightarrow 0} \frac{2 \cos x^4}{\cos x+\left(\frac{\sin x}{x}\right)} \\ \\& =\frac{2 \times 1}{1+1}=1 \end{aligned}

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE