Get Answers to all your Questions

header-bg qa

Let f(x)= \begin{cases}\frac{x^3+x^2-16 x+20}{(x-2)^2}, & x \neq 2 \\ k & , x=2\end{cases} If f(x) is continuous for all x, then k=

Option: 1

7


Option: 2

4


Option: 3

3


Option: 4

6


Answers (1)

best_answer

\mathrm{\because f(x) } is continuous
\mathrm{k=f(2)=\lim _{x \rightarrow 2} \frac{x^3+x^2-16 x+20}{(x-2)^2} }
\mathrm{\begin{aligned} & =\lim _{x \rightarrow 2} \frac{3 x^2+2 x-16}{2(x-2)} \\ & =\lim _{x \rightarrow 2} \frac{6 x+2}{2}=7 . \end{aligned} }

[By L.H. Rule]

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE