Get Answers to all your Questions

header-bg qa

Let   \mathrm{f(x)=|x|+|x-1|}   then

Option: 1

f(x) is continuous at x=0, as well as at x=1


Option: 2

f(x) is continuous at x=0, but not at x=1


Option: 3

f(x) is continuous at x=1, but not at x=0.


Option: 4

none of these.


Answers (1)

We have,   \mathrm{f(x)=|x|+|x-1|} 
\mathrm{ =\left\{\begin{array}{rr} -2 x+1, & x<0 \\ x-x+1, & 0 \leq x<1 \\ x+x-1, & x \geq 1 \end{array}=\left\{\begin{array}{rr} -2 x+1, & x<0 \\ 1 & 0 \leq x<1 \\ 2 x-1, & x \geq 1 \end{array}\right.\right.}
Clearly   ,\mathrm{ \lim _{x \rightarrow 0^{-}} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x)=1, \quad \lim _{x \rightarrow 1^{-}} f(x)=1 \quad}

and

\mathrm{ \lim _{x \rightarrow 1^{+}} f(x)=1}.

So  f(x) is continuous at x=0,1.

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE