The value of    \int_{1}^{a}[x]f'(x)dx,\; a> 1,where\; [x]  denotes the greatest integer not exceeding x is

  • Option 1)

    af(a)- \left \{f(1)+f(2)+...+f([a]) \right \}\;

  • Option 2)

    \; \; [a]f(a)-\left \{f(1)+f(2)+...+f([a]) \right \}

  • Option 3)

    [a]f([a])-\left \{f(1)+f(2)+...+f(a) \right \}

  • Option 4)

    af([a])-\left \{f(1)+f(2)+...+f(a) \right \}

 

Answers (1)

As learnt in concept

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

\int_{b}^{a}f\left ( x \right )dx= \int_{a}^{c}f\left ( x \right )dx+\int_{c}^{b}f\left ( x \right )dx
 

- wherein

 

 

 

 \left [ x \right ] has to be split into integral limits.

\int_{1}^{a}[x]f{}'(x)dx

=\int_{1}^{2}f{}'(x) dx+\int_{2}^{3}2f{}'(x)dx+----------------+\int_{[a]}^{a}[a]f{}'(x)dx

=f(2)-f(1)+2f(3)-2f(2)+---------------------------+[a]f(a)-[a]f([a])

Terms start cancelling out,

We get,

-f(1)-f(2)-f(3)----------------------------f[a]+[a]f(a)

=[a]f(a)-(f (1) +f(2) +---------------f([a]))


Option 1)

af(a)- \left \{f(1)+f(2)+...+f([a]) \right \}\;

This option is incorrect

Option 2)

\; \; [a]f(a)-\left \{f(1)+f(2)+...+f([a]) \right \}

This option is correct

Option 3)

[a]f([a])-\left \{f(1)+f(2)+...+f(a) \right \}

This option is incorrect

Option 4)

af([a])-\left \{f(1)+f(2)+...+f(a) \right \}

This option is incorrect

Most Viewed Questions

Preparation Products

Knockout JEE Main April 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
Buy Now
Knockout JEE Main May 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-