Get Answers to all your Questions

header-bg qa

The coordinate of the point(s) on the graph of the function f(x)=\frac{x^3}{3}-\frac{5 x^2}{2}+7 x-4, where the tangent drawn cut off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, is

Option: 1

\left(2, \frac{8}{3}\right)


Option: 2

\left(3, \frac{7}{2}\right)


Option: 3

\left(1, \frac{5}{6}\right)


Option: 4

None of these


Answers (1)

best_answer

Since, intercepts are equal in magnitude but opposite in sign

\Rightarrow \: \: \: \: \: \: \: \: \: \quad\left[\frac{d y}{d x}\right]_P=1

Now,             \frac{d y}{d x}=x^2=5 x+7=1

\begin{array}{lc} \Rightarrow &\: \: \: \: \: \: \: \: \: \: \: \: \: x^2-5 x+6=0 \\ \Rightarrow & x=2 \text { or } 3 \end{array}

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE