Get Answers to all your Questions

header-bg qa

The coordinates of the point on the parabola  \mathrm { y=x^2+6 x+5 } , which is nearest to the straight line  \mathrm { 2 x-y-5=0 } , is
 

Option: 1

(-3,-2)


Option: 2

(3,2)


Option: 3

(2,3)


Option: 4

(-2,-3)


Answers (1)

best_answer

Any point on the parabola is  \mathrm {A\left(t, t^2+6 t+5\right) or \: \: A\left(x, x^2+6 x+5\right)} . In order to draw the graph, we have
\mathrm { y=x^2+6 x+5 }

\mathrm { or\: \: y=(x+3)^2-4 }

\mathrm { \Rightarrow(x+3)^2=y+4 \quad \Rightarrow \quad X^2=Y }

\mathrm { \therefore }  Vertex is \mathrm { (-3,-4) }  , parabola cut x-axis at  \mathrm { (-1,0),(-5,0) }  & y-axis at \mathrm { (0,5). }

As  \mathrm { A\left(x, x^2+6 x+5\right) }  be any point on the parabola,

therefore let   \mathrm { S= } Distance from A to the line  \mathrm { 2 x-y-5=0 } 

Then, \mathrm { S=\frac{\left|2 x-x^2-6 x-5-5\right|}{\sqrt{5}}
\mathrm { S=\frac{\left|x^2+4 x+10\right|}{\sqrt{5}}=\frac{(x+2)^2+6}{\sqrt{5}} }

which will be minimum if  \mathrm { (x+2)=0 \: \: i.e., x=-2 }

\mathrm { \therefore(y)_{x=-2}=\left(x^2+6 x+5\right)_{x=-2}=-3 }

\mathrm { \therefore } Required point is (-2,-3)

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE