Get Answers to all your Questions

header-bg qa

The function \mathrm{f(x)=[x] \cos \frac{2 x-1}{2} \pi}, where [ . ] denotes the greatest integer function is discontinuous at
 

Option: 1

 all x
 


Option: 2

 all integer points
 


Option: 3

no x
 


Option: 4

x which is not integer


Answers (1)

best_answer

 If \mathrm{x \in n \in I, f(n)=n \cos \frac{2 n-1}{2} \pi=0.}

\mathrm{\lim _{x \rightarrow n+} f(x)=\lim _{x \rightarrow n^{+}} n \cos \frac{2 x-1}{2} \pi=0=\lim _{x \rightarrow n^{-}} f(x) }
If \mathrm{x \notin \mathrm{I}}, then [u] is a continuous at x and \mathrm{\cos \frac{2 u-1}{2} \pi } is also continuous. Hence f is a continuous function.

Posted by

vinayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE