Get Answers to all your Questions

header-bg qa

The number of points of discontinuity in x \in[1,3] \text { for } f(x)=\left[x^2+1\right]  where [ . ] represents greatest integer function is 

 

Option: 1

2


Option: 2

4


Option: 3

7


Option: 4

8


Answers (1)

best_answer

In x \in[1,3], f(x)  is discontinuous at x=\sqrt{2}, \sqrt{3}, 2, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, 3 \text { i.e } 8 \text { points }

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE