Get Answers to all your Questions

header-bg qa

The profile of a cam in a particular zone is given by \mathrm{ x=\sqrt{3} \cos \theta} and \mathrm{ y=\sin \theta}. The normal to the cam profile at

\mathrm{\theta=\frac{\pi}{4}} is at angle (with respect to x axis):

Option: 1

\frac{\pi}{4}


Option: 2

\frac{\pi}{2}


Option: 3

\frac{\pi}{3}


Option: 4

0


Answers (1)

best_answer

              \mathrm{ \begin{aligned} & x=\sqrt{3} \cos \theta \\ & y=\sin \theta \end{aligned} }
Slope of cam profile at an angle \mathrm{\theta} is

\mathrm{ \begin{aligned} \frac{d y}{d x} & =\frac{d y}{d \theta} \times \frac{1}{\left(\frac{d x}{d \theta}\right)} \\ & =\frac{\cos \theta}{-\sqrt{3} \sin \theta}=\frac{-\cot \theta}{\sqrt{3}} \end{aligned} }

Slope of Normal to cam profile at angle \mathrm{\theta} is

\mathrm{ m=\frac{-1}{\left(\frac{d y}{d x}\right)}=\sqrt{3} \tan \theta }

\mathrm{ \begin{aligned} & m=\sqrt{3} \tan \left(\frac{\pi}{4}\right) \\ & m=\sqrt{3} \end{aligned} }

Angle of Normal with x-axis is

\mathrm{ \begin{aligned} & \alpha=\tan ^{-1}(\mathrm{~m})=\tan ^{-1}(\sqrt{3}) \\ & \alpha=60^{\circ}=\frac{\pi}{3} \end{aligned} }

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE