Get Answers to all your Questions

header-bg qa

The reaction that occurs in a breath analyser, a device used to determine the alcohol level in a person's blood stream is \\2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+11 \mathrm{H}_{2} \mathrm{O} If the rate of appearance of \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} is 2.67 \mathrm{~mol} \mathrm{~min}^{-1} at a particular time, the rate of disappearance of \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} at the same time is_______ \mathrm{mol \: \: min { }^{-1}} (Nearest integer)
 

Answers (1)

best_answer

From differential rate of the given reaction, we have 

\mathrm{\frac{d\left [ Cr_{2} \left ( SO_{4} \right )_{3}\right ]}{2dt}= \frac{-d\left [ C_{2}H_{6}O \right ]}{3dt}}

\mathrm{\Rightarrow \frac{2. 67}{2}= \frac{-d\left [ C_{2}H_{6}O \right ]}{3dt}}

\mathrm{\Rightarrow \frac{-d\left [ C_{2}H_{6}O \right ]}{dt}= \frac{3\times 2. 67}{2}=\mathrm{4\, mol\, min^{-1}}}

Hence , the answer is 4

Posted by

sudhir.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE