Get Answers to all your Questions

header-bg qa

The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K \: and\: 2K and thickness x \: and\: 4x,respectively are T_{2} \: and\: T_{1},\left ( T_{2}> T_{1}\right )  .The rate of heat transfer through the slab, in a steady state  is \left ( \frac{A\left ( T_{2} -T_{1}\right )K}{x} \right )f, with f equal to

Option: 1

1


Option: 2

1/2


Option: 3

2/3


Option: 4

1/3


Answers (1)

best_answer

 

Here the two slabs are in series.

\therefore\ \; R=R_{1}+R_{2}

R = Thermal resistance

R=\frac{l}{KA}

R_{1}=\frac{x}{K.A}       &         R_{2}=\frac{4x}{2K.A}=\frac{2x}{K.A}

\therefore\ \; R=\frac{3x}{K.A}

Rate of Heat Transfer =\frac{\Delta T}{R}

=\frac{T_{1}-T_{2}}{3 \left(\frac{x}{KA} \right ) }= \left [ \frac{KA(T_{2}-T_{1})}{x} \right ].\frac{1}{3}

\therefore\ \;f=\frac{1}{3}

Correct option is 4.

Posted by

Divya Prakash Singh

View full answer