Get Answers to all your Questions

header-bg qa

Two moles of an ideal monatomic gas is taken through cycle ABCA as shown in the P-T diagram.
During the process A B, pressure and temperatue of the gas vary such that \mathrm{PT}=\text{constant}. If \mathrm{\mathrm{T}_{1}=300 \mathrm{~K}}, the work done on the gas in the process \mathrm{\mathrm{AB}} is

Option: 1

600 \mathrm{R}


Option: 2

800 \mathrm{R}


Option: 3

1000 \mathrm{R}


Option: 4

1200 \mathrm{R}


Answers (1)

best_answer

Number of moles, \mathrm{n}=2, \mathrm{~T}_{1}=300 \mathrm{~K}
\mathrm{\text{During the process} \, \mathrm{A} \rightarrow \mathrm{B}}


\mathrm{PT}=\text { constant or } \mathrm{P}^{2} \mathrm{~V}=\text { constant }=\mathrm{K} \text { (say) }
\mathrm{\therefore \quad \mathrm{P} =\frac{\sqrt{K}}{\sqrt{V}} }

\mathrm{\mathrm{~W}_{\mathrm{A} \rightarrow \mathrm{B}} =\int_{V_{A}}^{v_{B}} P d v=\int_{V_{A}}^{V_{B}} \frac{\sqrt{K}}{\sqrt{V}} d v }
                \mathrm{ =2 \sqrt{K}\left[\sqrt{V_{B}}-\sqrt{V_{A}}\right] }
                \mathrm{=2\left[\sqrt{K V_{B}}-\sqrt{K V_{A}}\right]}
               \mathrm{ =2\left[\sqrt{\left(P_{B}^{2} B_{B}\right) V_{B}}-\sqrt{\left(P_{A}^{2} V_{A}\right) V_{A}}\right]\left(\mathrm{K}=\mathrm{P}^{2} \mathrm{~V}\right)}
              \mathrm{ =2\left[\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}\right] }
              \mathrm{ =2\left[\mathrm{nRT} \mathrm{T}_{\mathrm{B}}-\mathrm{nRT}_{\mathrm{A}}\right] }
              \mathrm{ =2 \mathrm{nR}\left[\mathrm{T}_{1}-2 \mathrm{~T}_{1}\right] }
              \mathrm{ =(2)(2)(\mathrm{R})[300-600]}
              \mathrm{ =-1200 \mathrm{R}}

         \mathrm{ \therefore} Work done on the gas in the process AB is \mathrm{ 1200 \mathrm{R}}

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE