An equilateral glass prism has a refractive index of 1.6 in air. Calculate the angle of minimum deviation.
Given-
Formula- $$
n= \frac {sin (\frac {A+D_m} {2})} {sin \frac {A} {2} }
$$ $$
sin \frac {60} {2} = sin(30°) = 0.5
$$ So, $$
1.6= \frac {sin (\frac {60+D_m} {2})} {0.5}
$$ $$
sin (\frac {60+D_m} {2}) = 0.8
$$ $$
\frac {60+D_m} {2} = sin^{-1} (0.8) ≈53.1°
$$ $$
60 + D_m = 106.2°
$$ $$
D_m = 106.2° − 60° = 46.2°
$$
Therefore, the Angle of minimum deviation is 46.2°