Get Answers to all your Questions

header-bg qa

The mean lives of a radioactive substance are 1620 year and 405 year for \alpha-emission and \beta -emission respectively. Find the time during which three-fourth of a sample will decay if it is decaying both by \alpha -emission and \beta-emission simultaneously.

Option: 1

249 years


Option: 2

449 years 


Option: 3

133 years


Option: 4

99 years


Answers (1)

best_answer

The decay constant  \lambda is the reciprocal of the mean life  \tau

Thus,  \lambda_\alpha=\frac{1}{1620}  per year 

and \lambda_\beta=\frac{1}{405}  per year 

\therefore \text { Total decay constant, } \lambda=\lambda_\alpha+\lambda_\beta

or  \lambda=\frac{1}{1620}+\frac{1}{405}=\frac{1}{324}  per year 

We know that  \mathrm{N}=\mathrm{N}_0 \, \mathrm{e}^{-\lambda t}

When  \frac{3}{4} \text { th part of the sample has disintegrated, N=N_0 / 4

\therefore \quad \frac{\mathrm{N}_0}{4}=\mathrm{N}_0 \mathrm{e}^{-\lambda \mathrm{t}}

or  e^{\lambda t}=4

Taking logarithm of both sides, we get

\lambda t=\log _e 4

or \mathrm{t}=\frac{1}{\lambda} \log _{\mathrm{e}} 2^2=\frac{2}{\lambda} \log _{\mathrm{e}} 2

=2 \times 324 \times 0.693=449 \text { year }

Posted by

SANGALDEEP SINGH

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks