Get Answers to all your Questions

header-bg qa

Q.32) Two cities X and Y are connected by a regular bus service with a bus leaving in either direction every T min. A girl is driving scooty with a speed of $60 \mathrm{~km} / \mathrm{h}$ in the direction X to Y notices that a bus goes past her every 30 minutes in the direction of her motion, and every 10 minutes fin the opposite direction. Choose the correct-bption for the period T of the bus service and the speed (assumed constant) of the buses.

A)  $15 \mathrm{~min}, 120 \mathrm{~km} / \mathrm{h}$
 

B) $9 \mathrm{~min}, 40 \mathrm{~km} / \mathrm{h}$
 

C)  $25 \mathrm{~min}, 100 \mathrm{~km} / \mathrm{h}$
 

D) $10 \mathrm{~min}, 90 \mathrm{~km} / \mathrm{h}$



 

Answers (1)

best_answer

In same direction, relative speed $=v-60$, time between buses $=30 \mathrm{~min} \rightarrow$ distance between buses $=(v-$ $60) \times 0.5$

So:

$$
\text { Distance between buses }=v \cdot \frac{T}{60}=(v-60) \cdot 0.5
$$


In opposite direction, relative speed $=v+60$, time $=10 \mathrm{~min} \rightarrow$ distance $=(v+60) \cdot \frac{1}{6}$
So:

$$
v \cdot \frac{T}{60}=(v+60) \cdot \frac{1}{6}
$$

From (1):

$$
v \cdot \frac{T}{60}=\frac{v-60}{2} \Rightarrow \frac{v T}{60}=\frac{v-60}{2}
$$


From (2):

$$
\frac{v T}{60}=\frac{v+60}{6}
$$


Equating (a) and (b):

$$
\frac{v-60}{2}=\frac{v+60}{6} \Rightarrow 3(v-60)=v+60 \Rightarrow 3 v-180=v+60 \Rightarrow 2 v=240 \Rightarrow v=120 \mathrm{~km} / \mathrm{h}
$$


Plug into (a):

$$
\frac{120 T}{60}=\frac{120-60}{2} \Rightarrow 2 T=30 \Rightarrow T=15 \mathrm{~min}
$$


Correct answer: (1) $15 \mathrm{~min}, 120 \mathrm{~km} / \mathrm{h}$



 

Posted by

Saumya Singh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks