Careers360 Logo
NCERT Solutions for Class 12 Chemistry Chapter 2 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Solutions

Edited By Irshad Anwar | Updated on Mar 06, 2023 02:16 PM IST | #CBSE Class 12th

NCERT Solutions for Class 12 Chemistry Chapter 2 Solutions- In NCERT Class 12 Chemistry chapter 2 Solutions, there are direct answers to the 41 questions which are there in the chapter exercise. The students will be able to find step-by-step NCERT solutions for Class 12 Chemistry Chapter 2 Solutions which will eventually help you to write good answers and get good marks in the CBSE exam. The NCERT solutions which are provided here are free of cost and are easily accessible. By referring to the NCERT solutions for class 12, students can understand all the important concepts and practice questions well.

In our daily life, we come across various mixtures like soft drinks, syrups, and air. All of them are mixtures of two or more pure substances like air is a mixture of mainly nitrogen and oxygen etc. Also, you know about various types of mixtures or solutions like gaseous solutions, liquid solutions, and solid solutions. These topics of NCERT solutions for Class 12 Chemistry Chapter 2 Solutions are not only important for the CBSE 12th exam but also for the various competitive exams like JEE Mains, NEET, BITSAT, VITEEE, etc.

Apply to Aakash iACST Scholarship Test 2024

Applications for Admissions are open.

Also Read,

NCERT Exemplar Solutions Class 12 Chemistry Chapter 2

NCERT Solutions For Class 12 Chemistry Chapter 2 Solutions

NCERT chemistry class 12 intext questions solutions chapter 2: Exercise 2.1 to 2.12

Question 2.1 Calculate the mass percentage of benzene (C_{6}H_{6}) and carbon tetrachloride (CCl_{4}) if 22\; g of benzene is dissolved in 122\; g of carbon tetrachloride.

ALLEN NEET Coaching

Ace your NEET preparation with ALLEN Online Programs

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

Answer :

We know that solute and solvent forms solution.

So mass percentage of benzene (solute) :-

=\frac{22}{22+122}\times100 = \frac{22}{144}\times100 = 15.28\%

Similarly mass percentage of CCl 4 :-

=\frac{122}{22+122}\times100 = \frac{122}{144}\times100 = 84.72\%

Question 2.2 Calculate the mole fraction of benzene in solution containing 30\% by mass in carbon tetrachloride.

Answer :

For calculating mole fraction, we need moles of both the compounds.

It is given that benzene is 30\% in the solution by mass.

So if we consider 100g of solution then 30g is benzene and 70g is CCl 4 .

Moles of CCl_{4}= \frac{Given\ mass}{Molar\ mass} = \frac{70}{154} = 0.4545\ mol

\left ( Molar\ mass\ of\ CCl_4 = 12 + 4(35.5) \right )

Similarly moles of benzene :

= \frac{30}{78} = 0.3846 \left ( Molar\ mass\ of\ benzene = 6(12) + 6(1) \right )

So mole fraction of benzene is given :

= \frac{0.3846}{0.3846+0.4545}

= 0.458

Question 2.3(a) Calculate the molarity of each of the following solutions:

30\; g of Co(NO_{3})_{2}.\; 6H_{2}O in 4.3\: L of solution

Answer :

For finding molarity we need the moles of solute and volume of solution.

So moles of solute :

= \frac{Given\ mass}{Molar\ mass} = \frac{30}{291} = 0.103

1643795412760 = 291\ g\ mol^{-1}

Now, Molarity = \frac{No.\ of\ moles\ of\ solute}{Volume\ of\ solution\ (l)}

= \frac{0.103}{4.3} = 0.023\ M

Question 2.3(b) Calculate the molarity of each of the following solutions:

30\; mL of 0.5\; M H_{2}SO_{4} diluted to 500 \; mL .

Answer :

By conservation of moles we can write :

M 1 V 1 = M 2 V 2

Given that M 1 = 0.5 M and V 1 = 30 ml ; V 2 = 500 ml

M_2 = \frac{M_1V_1}{V_2} = 0.03\ M

Question 2.4 Calculate the mass of urea (NH_{2}CONH_{2}) required in making 2.5 \; kg of 0.25\; molal aqueous solution.

Answer :

Let us assume that the mass of urea required be x g.

So moles of urea will be :

Moles = \frac{Given\ mass}{Molar\ mass} = \frac{x}{60}\ moles

Molality = \frac{Moles}{Mass\ of\ solvent\ in\ Kg} = \frac{\frac{x}{60}}{2.5-0.001x} = 0.25

we get x = 37

Thus mass of urea required = 37 g.

Question 2.5 Calculate

(a) molality

(b) molarity and

(c) mole fraction

of KI if the density of 20\% (mass/mass) aqueous KI is 1.202\; g\; mL^{-1} .

Answer :

If we assume our solution is 100 g. Then according to question, 20 g KI is present and 80 g is water.

So moles of KI :

=\frac{20}{166} \left ( Molar\ mass = 39+127 = 166\ g\ mol^{-1} \right )

(a) Molality :-

Molality = \frac{Moles}{Mass\ of\ solvent\ in\ Kg} = \frac{\frac{20}{166}}{0.08}= 1.506\ m.

(b) Molarity :-

Density = \frac{Mass}{Volume}

Volume = \frac{Mass}{Density} = \frac{100}{1.202} = 83.19 mL

Molarity = \frac{Moles}{Volume(l)} = \frac{\frac{20}{166}}{83.19\times10^{-3}} = 1.45\ M


(c) Mol fraction :- Moles of water :-

= \frac{80}{18} = 4.44

So, mol fraction of KI :-

= \frac{0.12}{0.12+4.44} = 0.0263

Question 2.6 H_{2}S, a toxic gas with rotten egg-like smell, is used for the qualitative analysis. If the solubility of H_{2}S, in water at STP is 0.195\; m. calculate Henry’s law constant.

Answer :

For finding Henry's constant we need to know about the mole fraction of H 2 S.

Solubility of H 2 S in water is given to be 0.195 m .

i.e., 0.195 moles in 1 Kg of water.

Moles\: of\: water :=\frac{1000}{18} = 55.55\ moles

So x_{H_2S} = Mole\ fraction\ of\ H_2S

= \frac{0.195}{0.195+55.55} = 0.0035

At STP conditions, pressure = 1 atm or 0.987 bar

Equation is : p_{H_2S} = K_h\times x_{H_2S}

So we get :

K_h =\frac{0.987}{0.0035} = 282\ bar

Question 2.7 Henry’s law constant for CO_{2} in water is 1.67\times 10^{8}\; Pa at 298\; K. Calculate the quantity of CO_{2} in 500\; mL of soda water when packed under 2.5\; atmCO_{2} pressure at 298 \; K.

Answer :

We know that ,

p = k_h\times x

Pressure of CO 2 = 2.5 atm

We know that : 1\ atm = 1.01\times10^5\ Pa

So, Pressure of CO 2 = 2.53\times10^5 Pa

By Henry Law we get,

x = \frac{p}{k_h} = \frac{2.53\times10^5}{1.67\times10^8} = 1.52\times10^{-3}

Taking density of soda water = 1 g/ml

We get mass of water = 500 g.

So, Moles of water :

= \frac{500}{18} = 27.78

Also, x_{H_2O} = \frac{n_{CO_2}}{n_{H_2O}+n_{CO_2}} \approx \frac{n_{CO_2}}{n_{H_2O}}

So, moles of CO 2 = 0.042 mol

Using relation of mole and given mass, we get

Mass of CO 2 = 1.848 g.

Question 2.8 The vapour pressure of pure liquids A and B are 450 and 700\; mm \; Hg respectively, at 350\; K . Find out the composition of the liquid mixture if total vapour pressure is 600\; mm\; Hg . Also find the composition of the vapour phase.

Answer :

Let the composition of liquid A (mole fraction) be x A .

So mole fraction of B will be x B = 1 - x A .

Given that, P^{\circ}_A = 450\ mm\ of\ Hg\ ;\ P^{\circ}_B = 700\ mm\ of\ Hg

Using Raoult’s law ,

p_{total} = p^{\circ}_A\ x_A\ +\ p^{\circ} _B\ (1-x_A)

Putting values of p total and vapour pressure of pure liquids in the above equation, we get :

600 = 450.x A + 700.(1 - x A )

or 600 - 700 = 450x A - 700x A

or x A = 0.4

and x B = 0.6

Now pressure in vapour phase :

P_A = p^{\circ}_A\ x_A

= 450(0.4) = 180 mm of Hg

P_B = p^{\circ}_B\ x_B

= 700(0.6) = 420 mm of Hg

Mole\ fraction\ of\ liquid\ A = \frac{P_A}{P_A\ + P_B }

= \frac{180}{180\ + 420 } = 0.30

And mole fraction of liquid B = 0.70

Question 2.9 Vapour pressure of pure water at 298 \; K is 23.8\; mm \; Hg. 50\; g of urea (NH_{2}CONH_{2}) is dissolved in 850 \; g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

Answer :

Given that vapour pressure of pure water, p^{\circ}_w = 23.8\ mm\ of\ Hg

Moles of water :

= \frac{850}{18} = 47.22

Moles of urea :

= \frac{50}{60} = 0.83

Let the vapour pressure of water be p w .

By Raoult's law, we get :

\frac{p^{\circ}_w - p_w}{p^{\circ}_w} = \frac{n_2}{n_1\ + n_2}

or \frac{23.8 - p_w}{23.8} = \frac{0.83}{47.22\ + 0.83}=0.0173

or p w = 23.4 mm of Hg.

Relative lowering :- Hence, the vapour pressure(v.P) of water in the solution = 23.4 mm of Hg

and its relative lowering = 0.0173.

Question 2.10 Boiling point of water at 750 \; mm \; Hg is 99.63^{\circ}C . How much sucrose is to be added to 500 \; g of water such that it boils at 100^{\circ}C.

Answer :

Here we will use the formula :

\Delta T_b = \frac{K_b\times1000\times w_2}{M_2\times w_1}

Elevation in temperature = 100 - 99.63 = 0.37

K b = 0.52 ; Molar\ mass\ of\ sucrose = 11(12) + 22(1) + 11(16) = 342\ g\ mol^{-1}

Putting all values in above formula, we get :

w_2 = \frac{0.37\times342\times500}{0.52\times1000}= 121.67\ g

Thus 121.67 g of sucrose needs to be added.

Question 2.11 Calculate the mass of ascorbic acid (Vitamin C, C_{6}H_{8}O_{6} ) to be dissolved in 75 \; g of acetic acid to lower its melting point by 1.5^{\circ}C . K_{f}=3.9\; K\; kg\; mol^{-1}

Answer :

Elevation in melting point = 1.5 degree celsius.

Here we will use the following equation :

\Delta T_b = \frac{K_b\times 1000\times w_2}{M_2\times w_1}

Putting given values in the above equation :

w_2 = \frac{1.5\times176\times75}{3.9\times1000} = 5.08\ g

Thus 5.08 ascorbic acid is needed for required condition.

Question 2.12 Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 \; g of polymer of molar mass 185,000 in 450\; mL of water at 37^{\circ}C.

Answer :

We know that :

Osmotic\ Pressure = \Pi = \frac{n}{v}RT

We are given with :-

Moles\ of\ polymer = \frac{1}{185000}

Volume, V = 0.45 L

Thus osmotic pressure :

= \frac{\frac{1}{185000}\times8.314\times10^3\times310}{0.45} = 30.98\ Pa

NCERT solutions for class 12 chemistry chapter 2 Solutions : Exercises


Q.2.1 Define the term solution. How many types of solutions are formed? Write briefly about each type with an example.

Solution :- A solution is a homogeneous mixture of two or more non-reacting substances. It has two components :- solute and solvent.

Types of solutions are given below :-

15947283417001594728338462

Q.2.2 Give an example of a solid solution in which the solute is a gas.

Answer:

Solution of hydrogen in palladium is such an example in which solute is a gas and solvent is solid.

Q.2.3(i) Define the following terms:

Mole fraction

Answer :

Mole fraction is defined as the ratio of number of moles of a component and total number of moles in all components.

i.e., Mole\ fraction = \frac{Number\ of\ moles\ in\ a\ component }{Total\ number\ of\ moles\ in\ all\ components}

Q.2.3(ii) Define the following terms:

Molality

Answer :

It is defined as the number of moles of solute dissolved per kg (1000g) of solvent

i.e., Molality = \frac{Number\ of\ moles\ of\ solute}{Mass\ of\ solvent\ in\ Kg}

It is independent of temperature.

Q2.3(iii) Define the following terms:

Molarity

Answer :

Molarity is defined as number of moles of solute dissolved per litre(or 1000ml) of solution.

i.e., Molarity = \frac{No.\ of\ moles\ of\ solute}{Volume\ of\ solution\ in\ litre}

It depends on temperature because volume is dependent on temperature.

Q2.3(iv) Define the following terms:

Mass percentage.

Answer :

Mass percentage is defined as the percentage ratio of mass of one component to the total mass of all the components.

i.e., Mass\ percentage = \frac{Mass\ of\ a\ component}{Total\ mass\ of\ solution}\times100

Q2.4 Concentrated nitric acid used in laboratory work is 68\% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the density of the solution is 1.504\; g\; mL^{-1}\; ?

Answer :

According to given question, in 100 g of solution 68 g is nitric acid and rest is water.

So moles of 68 g HNO 3 :-

=\ \frac{68}{63} = 1.08

Density of solution is given to be 1.504.

So volume of 100 g solution becomes :-

=\ \frac{100}{1.504} = 66.49\ mL

Thus, molarity of nitric acid is :

Molarity = \frac{1.08}{\frac{66.49}{1000}} = 16.24\ M

Q2.5 A solution of glucose in water is labelled as 10\% w/w, what would be the molality and mole fraction of each component in the solution? If the density of solution is 1.2\; g\; mL^{-1}, then what shall be the molarity of the solution?

Answer :

According to question, 10\% mass percentage means in 100 g of solution 10 g glucose is dissolved in 90 g water.

Molar mass of glucose (C 6 H 12 O 6 ) = 180\ g\ mol^{-1}

So moles of glucose are :

\frac{10}{180} = 0.056 mol

Moles\: of\: water = \frac{90}{18} = 5 mol

Molality = \frac{0.056}{0.09} = 0.62\ m

Mole fraction :-

\frac{0.056}{0.056+5} = 0.011

Molarity :- Volume of 100 g solution :

=\frac{100}{1.2} =83.3\ mL

Molarity = \frac{0.056}{83.33\times10^{-3}} =0.67\ M

Q2.6 How many mL of 0.1\; M\; HCl are required to react completely with 1 \; g mixture of Na_{2}CO_{3} and NaHCO_{3} containing equimolar amounts of both?

Answer :

Total amount of mixture of Na 2 CO 3 and NaHCO 3 = 1 g.

Let the amount of Na 2 CO 3 be x g.

So the amount of NaHCO 3 will be equal to (1 - x) g.

Molar\ mass\ of\ Na_2CO_3 = 106\ ;\ molar\ mass\ of\ NaHCO_3 = 84

Now it is given that it is an equimolar mixture.

So, Moles of Na 2 CO 3 = Moles of NaHCO 3 .

or \frac{x}{106} = \frac{1-x}{84}

or x = 0.558 g

So Moles\ of \ Na_2CO_3 = \frac{0.558}{106} = 0.00526

and Moles\ of \ NaHCO_3 = \frac{1 - 0.558}{84} = 0.0053

1643795505182

It is clear that for 1 mol of Na 2 CO 3 2 mol of HCl is required, similarly for 1 mol of NaHCO 3 1 mol of HCl is required.

So number of moles required of HCl = 2(0.00526) + 0.0053 = 0.01578 mol

It is given that molarity of HCl is 0.1 which means 0.1 mol of HCl in 1l of solution.

Thus required volume :

= \frac{0.01578}{0.1} = 0.1578\ l = 157.8\ mL

Q2.7 A solution is obtained by mixing 300 \; g of 25\% solution and 400 \; g of 40\% solution by mass. Calculate the mass percentage of the resulting solution.

Answer :

According to question we have 2 solute,

Solute 1. : 25\% of 300 g gives :

\frac{25}{100}\times300 = 75\ g

Solute 2. : 40\% of 400 g gives :

\frac{40}{100}\times400 = 160\ g

So total amount of solute = 75 + 160 = 235 g.

Thus mass percentage of solute is :

= \frac{235}{700}\times100 = 33.5\%

and mass percentage of water = 100 - 33.5 = 66.5\%

Q2.8 An antifreeze solution is prepared from 222.6\; g of ethylene glycol (C_{2}H_{6}O_{2}) and 200\; g of water. Calculate the molality of the solution. If the density of the solution is 1.072 \; g\; mL^{-1} then what shall be the molarity of the solution?

Answer :

For finding molality we need to find the moles of ethylene glycol.

Moles of ethylene glycol :

= \frac{222.6}{62}= 3.59\ mol

We know that :

Molality = \frac{Moles\ of\ ethylene\ glycol}{Mass\ of\ water}\times100

= \frac{3.59}{200}\times100 = 17.95\ m

Now for molarity :-

Total mass of solution = 200 + 222.6 = 422.6 g

Volume of solution

= \frac{422.6}{1.072}= 394.22\ mL

So molarity :-

= \frac{3.59}{394.22}\times1000= 9.11\ M

Q2.9(i) A sample of drinking water was found to be severely contaminated with chloroform (CHCl_{3}) supposed to be a carcinogen. The level of contamination was 15\; ppm (by mass):

express this in percent by mass

Answer :

We know that 15 ppm means 15 parts per million.

Required percent by mass :

= \frac{Mass\ of\ chlorofoam}{Total\ mass}\times100

= \frac{15}{10^6}\times100 = 1.5\times10^{-3}\%

Q2.9(ii) A sample of drinking water was found to be severely contaminated with chloroform (CHCl_{3}) supposed to be a carcinogen. The level of contamination was 15\; ppm (by mass):

determine the molality of chloroform in the water sample.

Answer :

Moles of chloroform :

=\frac{15}{119.5} = 0.1255\ mol

Mass of water is 10^6 . (Since contamination is 15 ppm)

So molality will be :

=\frac{0.1255}{10^6}\times1000 = 1.255\times10^{-4}\ m

Q2.10 What role does the molecular interaction play in a solution of alcohol and water?

Answer :

Both alcohol and water individually have strong hydrogen bonds as their force of attraction. When we mix alcohol with water they form solution due to the formation of hydrogen bonds but they are weaker as compared to hydrogen bonds of pure water or pure alcohol.

Thus this solution shows a positive deviation from the ideal behaviour.

Q2.11 Why do gases always tend to be less soluble in liquids as the temperature is raised?

Answer:

It is known that dissolution of gas in a liquid is an exothermic process. So, by Le Chatelier principle we know that equilibrium shifts backwards as we increase temperature in case of exothermic process. Thus gases always tend to be less soluble in liquids as the temperature is raised.

Q2.12 State Henry’s law and mention some important applications.

Answer :

According to Henry's law at a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of solution or liquid.

i.e., p = k h x, Here k h is Henry’s law constant.

Some of its applications are as follows:-

(a) We can increase the solubility of CO 2 in soft drinks, the bottle is sealed under high pressure.

(b) To avoid bends (due to blockage of capillaries) and the toxic effects of high concentrations of nitrogen in the blood, the tanks used by scuba divers are filled with air diluted with helium (11.7% helium, 56.2% nitrogen and 32.1% oxygen).

(c) The partial pressure of oxygen is less at high altitudes than that at the ground level. This leads to low concentrations of oxygen in the blood and tissues climbers. Due to low blood oxygen, climbers become weak and unable to think clearly which are symptoms of a condition known as anoxia.

Q2.13 The partial pressure of ethane over a solution containing 6.56\times 10^{-3}\; g of ethane is 1 bar. If the solution contains 5.00\times 10^{-2}g of ethane, then what shall be the partial pressure of the gas?

Answer :

Using Henry's Law we can write,

m = k.P

Putting value in this equation, we get :

6.56\times10^{-3} = k\times 1

So, the magnitude of k is 6.56\times10^{-3} .

Now, we will again use the above equation for m = 5.0\times10^{-2}\ g .

So the required partial pressure is :-

p = \frac{m}{k} = \frac{5.0\times10^{-2}}{6.56\times10^{-3}}

or p = 7.62\ bar

Q2.14 What is meant by positive and negative deviations from Raoult's law and how is the sign of \Delta _{mix}H related to positive and negative deviations from Raoult's law?

Answer :

Positive and negative deviation: - A non-ideal solution is defined as a solution which does not obey Raoult’s law over the entire range of concentration i.e., \Delta _{Mix}H \neq 0 and \Delta _{Mix}V \neq 0 . The vapour pressure of these solutions is either higher or lower than that expected by Raoult’s law. If vapour pressure is higher, the solution shows a positive deviation and if it is lower, it shows a negative deviation from Raoult’s law.

Enthalpy relation to positive and negative deviation can be understood from the following example:-

Consider a solution made up of two components - A and B. In the pure state the intermolecular force of attraction between them are A-A and B-B. But when we mix the two, we get a binary solution with molecular interaction A-B.

If A-B interaction is weak than A-A and B-B then enthalpy of reaction will be positive thus reaction will tend to move in a backward direction. Hence molecules in binary solution will have a higher tendency to escape. Thus vapour pressure increases and shows positive deviation from the ideal behaviour.

Similarly, for negative deviation, A-B interaction is stronger than that of A-A and B-B.

Q2.15 An aqueous solution of 2\% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?

Answer :

It is given that 2\% of aq. solution. This means 2 g of non-volatile solute in 98 g of H 2 O.

Also the vapour of water at normal boiling point = 1.013 bar.

Using Raoult's law :

\frac{p_w^{\circ} - p}{p_w^{\circ}} = \frac{w_2.M_1}{w_1.M_2}

So we get :

M_2 = \frac{2\times18\times1.013}{0.009\times98} = 41.35\ g\ mol^{-1}

Thus the molar mass of non-volatile solute is 41.35 unit.

Q2.16 Heptane and octane form an ideal solution. At 373\; K , the vapour pressures of the two liquid components are 105.2\; kPa and 46.8\; kPa respectively. What will be the vapour pressure of a mixture of 26.0\; g of heptane and 35\; g of octane?

Answer :

Vapour pressure of heptane = p_h^{\circ} = 105.2\ KPa

and vapour pressure of octane = p_o^{\circ} = 46.8\ KPa

Firstly we will find moles of heptane and octane so that we can find vapour pressure of each.

Molar mass of heptane = 7(12) + 16(1) = 100 unit.

and molar mass of octane = 8(12) + 18(1) = 114 unit.

So moles of heptane :

\frac{26}{100} = 0.26

and moles of octane :

\frac{35}{114} = 0.31

Mole fraction of heptane = 0.456 and mole fraction of octane = 0.544

Now we will find the partial vapour pressure:-

(i) of heptane :- p_h = 0.456\times105.2 = 47.97\ KPa

(ii) of octane :- p_o = 0.544\times46.8 = 25.46\ KPa

So total pressure of solution = p_h+p_o

= 47.97 + 25.46 = 73.43 KPa

Q2.17 The vapour pressure of water is 12.3 \; k Pa at 300 \; K. Calculate vapour pressure of 1 molal solution of a non-volatile solute in it.

Answer :

It is asked the vapour pressure of 1 molal solution which means 1 mol of solute in 1000 g H 2 O.

Moles in 1000g of water = 55.55 mol. (Since the molecular weight of H 2 O is 18)

Mole fraction of solute :

\frac{1}{1+55.55} = 0.0177

Applying the equation :

\frac{p_w^{\circ} - p}{p_w^{\circ}} = x_2

or \frac{12.3 - p}{12.3} = 0.0177

or p = 12.083\ KPa

Thus the vapour pressure of the solution is 12.083 KPa

Q2.18 Calculate the mass of a non-volatile solute (molar \; mass\; 40 \; g \; mol^{-1}) which should be dissolved in 114\; g octane to reduce its vapour pressure to 80\% .

Answer :

Let the initial vapour pressure of octane = p_o^{\circ} .

After adding solute to octane, the vapour pressure becomes :

=\frac{80}{100}\times p_o^{\circ} = 0.8p_o^{\circ}

Moles of octane :

= \frac{114}{114} = 1 \left ( Molar\ mass\ of\ octane = 8(12) + 18(1) = 114\ g\ mol^{-1} \right )

Using Raoult's law we get :

\frac{p_o^{\circ} - p}{p_o^{\circ}} = x_2

or \frac{p_o^{\circ} -0.8p_o^{\circ} }{p_o^{\circ}} = \frac{\frac{W}{40}}{\frac{W}{40}+1}

or w = 10\ g

Thus required mass of non-volatile solute = 10g.

Q2.19(i) A solution containing 30 g of non-volatile solute exactly in 90\; g of water has a vapour pressure of 2.8\; k\; Pa at 298 \; K. . Further, 18 \; g of water is then added to the solution and the new vapour pressure becomes 2.9\; kPa at 298\; K. . Calculate:

molar mass of the solute

Answer :

In this question we will find molar mass of solute by using Raoult's law .

Let the molar mass of solute is M.

Initially we have 30 g solute and 90 g water.

Moles of water :

\frac{90}{18} = 5\ mol

By Raoult's law we have :-

\frac{p_w^{\circ} - p}{p_w^{\circ}} = \frac{n_2}{n_1+n_2}

or \frac{p_w^{\circ} - 2.8}{p_w^{\circ}} = \frac{\frac{30}{M}}{5+\frac{30}{M}} = \frac{30}{5M+30}

or \frac{p_w^{\circ} }{2.8} = \frac{5M+30}{5M} ------------------------------ (i)

Now we have added 18 g of water more, so the equation becomes:

Moles of H 2 O :

\frac{90+18}{18} = 6\ mol

Putting this in above equation we obtain :-

\frac{p_w^{\circ} - 2.9}{p_w^{\circ}} = \frac{\frac{30}{M}}{6+\frac{30}{M}} = \frac{30}{6M+30}

or \frac{p_w^{\circ} }{2.9} = \frac{6M +30}{6M} -----------------------------------(ii)

From equation (i) and (ii) we get

M = 23 u

So the molar mass of solute is 23 units.

Q2.19(ii) A solution containing 30\; g of non-volatile solute exactly in 90\; g of water has a vapour pressure of 2.8\; kPa at 298 \; K Further, 18 \; g of water is then added to the solution and the new vapour pressure becomes 2.9 \; kPa at 298 \; K. Calculate

vapour pressure of water at 298 K.

Answer :

In the previous part we have calculated the value of molar mass the Raoul's law equation.

We had :-

\frac{p_w^{\circ} }{2.8} = \frac{5M+30}{5M}

Putting M = 23 u in the above equation we get,

\frac{p_w^{\circ} }{2.8} = \frac{5(23)+30}{5(23) } =\frac{145}{115}

or p_w^{\circ} =3.53

Thus vapour pressure of water = 3.53 kPa.

Q2.20 A 5\% solution (by mass) of cane sugar in water has freezing point of 271 K. Calculate the freezing point of 5\% glucose in water if freezing point of pure water is 273.15 \; K.

Answer :

It is given that freezing point of pure water is 273.15 K.

So, elevation of freezing point = 273.15 - 271 = 2.15 K

5\% solution means 5 g solute in 95 g of water.

Moles of cane sugar :

= \frac{5}{342} = 0.0146

Molality :

= \frac{0.0146}{0.095} = 0.1537

We also know that - \Delta T_f = k_f \times m

or k_f = \frac{\Delta T_f}{m} = 13.99\ K\ Kg\ mol^{-1}

Now we will use the above procedure for glucose.

5\% of glucose means 5 g of gluocse in 95 g of H 2 O.

Moles of glucose :

\frac{5}{180} = 0.0278

Thus molality :

= \frac{.0278}{0.095} = 0.2926\ mol\ kg^{-1}

So, we can find the elevation in freezing point:

\Delta T_f = k_f \times m

= 13.99 \times 0.2926 = 4.09\ K

Thus freezing point of glucose solution is 273.15 - 4.09 = 269.06 K.

Q2.21 Two elements A and B form compounds having formula AB 2 and AB 4 . When dissolved in 20 g of benzene (C_{6}H_{6}), 1\; g of AB 2 lowers the freezing point by 2.3\; K whereas 1.0\; g of AB 4 lowers it by 1.3\; K . The molar depression constant for benzene is 5.1\; K\; kg\; mol^{-1}. Calculate atomic masses of A and B.

Answer :

In this question we will use the formula :

\Delta T_f = k_f \times m

Firstly for compound AB 2 :-

M_B = \frac{K_f\times W_b \times 1000}{w_A\times \Delta T_f}

or = \frac{5.1\times 1 \times 1000}{20\times 2.3} = 110.87\ g/mol

Similarly for compound AB 4 :-

M_B= \frac{5.1\times 1 \times 1000}{20\times 1.3} = 196\ g/mol

If we assume atomic weight of element A to be x and of element B to be y, then we have :-

x + 2y = 110.87 ----------------- (i)

x + 4y = 196 ----------------- (ii)

Solving both the equations, we get :-

x = 25.59 ; y = 42.6

Hence atomic mass of element A is 25.59u and atomic mass of element B is 42.6u.

Q2.22 At 300 \; K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98\; bar. If the osmotic pressure of the solution is 1.52\; bars at the same temperature, what would be its concentration?

Answer :

According to given conditions we have same solution under same temperature. So we can write :

\frac{\Pi _1}{C_1} = \frac{\Pi _2}{C_2} \left ( \Pi = C.R.T\ ; RT = \frac{\Pi }{C} \right )

So, if we put all the given values in above equation, we get

\frac{4.98}{\frac{36}{180}} = \frac{1.52}{C_2}

or C_2 = \frac{1.52\times36}{4.98\times180} = 0.061 M

Hence the required concentration is 0.061 M.

Q2.23(i) Suggest the most important type of intermolecular attractive interaction in the following pairs.

n-hexane and n-octane

Answer :

Since both the compounds are alkanes so their mixture has van der Waal force of attraction between compounds.

Q2.23(ii) Suggest the most important type of intermolecular attractive interaction in the following pairs.

I_{2}\; and\; CCl_{4}

Answer :

The binary mixture of these compounds has van der Waal force of attraction between them.

Q2.23(iii) Suggest the most important type of intermolecular attractive interaction in the following pairs.

NaClO_{4} \; and \; Water

Answer :

The given compounds will have ion-dipole interaction between them.

Q2.23(iv) Suggest the most important type of intermolecular attractive interaction in the following pairs.

methanol\; and\; acetone

Answer :

Methanol has -OH group and acetone has ketone group. So there will be hydrogen bonding between them.

Q2.23(v) Suggest the most important type of intermolecular attractive interaction in the following pairs.

acetonitrile (CH_{3}CN) and acetone (C_{3}H_{6}O).

Answer :

They will have dipole-dipole interaction since both are polar compounds.

Q2.24 Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain.

Cyclohexane, KCl, CH3OH, CH3CN.

Answer :

The order will be : Cyclohexane > CH 3 CN > CH 3 OH > KCl

In this, we have used the fact that like dissolves like.

Since cyclohexane is an alkane so its solubility will be maximum.

Q2.25(i) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

phenol

Answer :

We know the fact that like dissolves in like.

Since phenol is had both polar and non-polar group so it is partially soluble in water.

Q2.25(ii) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

toluene

Answer :

Since toluene is a non-polar compound i.e., it doesn't have any polar group so it is insoluble in water. (because water is a polar compound)

Q2.25(iii) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

formic acid

Answer :

Since the -OH group in formic acid (polar) can form H-bonds with water thus it is highly soluble in water.

Q2.25(iv) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

ethylene glycol

Answer :

Ethylene glycol is an organic compound but is polar in nature. Also, it can form H-bonds with water molecules, thus it is highly soluble in water.

Q2.25(v) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

chloroform

Answer :

Chloroform is a non-polar compound so it is insoluble in water.

Q2.25(vi) Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?

pentanol

Answer :

Pentanol has both polar and non-polar groups so it is partially soluble in water.

Q2.26 If the density of some lake water is 1.25g\; mL^{-1} and contains 92\; g of Na^{+}\; ions per kg of water, calculate the molality of Na^{+}\; ions in the lake.

Answer :

We know that, Molality :

Molality = \frac{Moles\ of\ solute}{Mass\ of\ solvent\ in\ Kg}

So, for moles of solute we have :

Moles\ of\ Na^+ = \frac{92}{23} = 4

Thus, molality :

= \frac{4}{1} = 4

Molality of Na + ions is 4m.

Q2.27 If the solubility product of CuS is 6\times10^{-16} , calculate the maximum molarity of CuS in aqueous solution.

Answer :

We are given, K_{sp} = 6\times10^{-16}

The dissociation equation of CuS is given by :-

1649230202725

So, the equation becomes :- K_{sp} = Cu^{2+}\times {S^{2-}}

or K_{sp} = s\times s = s^2

or s = 2.45\times 10^{-8}\ M

Thus maximum molarity of solution is 2.45\times 10^{-8}\ M .

Q2.28 Calculate the mass percentage of aspirin (C_{9}H_{8}O_{4}) in acetonitrile (CH_{3}CN) when 6.5 \; g of C_{9}H_{8}O_{4} is dissolved in 450\; g of CH_{3}CN .

Answer :

Total mass of solution = Mass of aspirin + Mass of acetonitrile = 6.5 + 450 = 456.5 g.

We know that :

Mass\ percentage = \frac{Mass\ of\ solute }{Mass\ of\ solution}\times100

So, Mass\ percentage = \frac{6.5 }{456.5}\times100 = 1.42\%

Thus the mass percentage of aspirin is 1.42\%

Q2.29 Nalorphene (C_{19}H_{21}NO_{3}) , similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 \; mg. Calculate the mass of 1.5 -10^{-3} m aqueous solution required for the above dose.

Answer :

We are given with molality of the solution, so we need to find the moles of Nalorphene.

Molar mass of nalorphene = 19(12) + 21(1) + 1(14) + 3(16) = 311u.

So moles of nalorphene :

\frac{1.5\times10^{-3}}{311} = 4.82\times 10^{-6}\ moles

Molality :

= \frac{No.\ of\ moles\ of\ solute}{Mass\ of\ solvent\ in\ kg}

or 1.5\times 10^{-3} = \frac{4.82\times 10^{-6}}{w}

or w = 3.2\times 10^{-3}\ Kg

So the required weight of water is 3.2 g.

Q2.30 Calculate the amount of benzoic acid (C_{6}H_{5}COOH) required for preparing 250\; mL of 0.15 \; M solution in methanol.

Answer :

Molar mass of benzoic acid = 7(12) + 6(1) + 2(16) = 122u.

We are given with the molarity of solution.

Molarity = \frac{Moles\ of\ solute}{Volume\ of\ solution\ in\ litre}

or 0.15 = \frac{Moles\ of\ solute}{\frac{250}{1000}}

or Moles\ of\ solute= \frac{0.15\times 250}{1000} = 0.0375\ mol

So mass of benzoic acid :

= Moles\ of\ benzoic\ acid \times Molar\ mass

=0.0375\times 122 = 4.575\ g

Hence the required amount of benzoic acid is 4.575 g.

Q2.31 The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid and trifluoroacetic acid increases in the order given above. Explain briefly.

Answer :

We know that depression in freezing point of water will depend upon the degree of ionisation.

The degree of ionisation will be highest in the case of trifluoroacetic acid as it is most acidic among all three.

The order of degree of ionisation on the basis if acidic nature will be:- Trifluoroacetic acid > Trichloroacetic acid > Acetic acid.

So the depression in freezing point will be reverse of the above order.

Q2.32 Calculate the depression in the freezing point of water when 10 \; g of CH_{3}CH_{2}CHCICOOH is added to 250 \; g of water.

K_{a}=1.4\times 10^{-3} , K_{f}=1.86\; K\; kg\; mol^{-1}

Answer :

Firstly we will find the Vant's Hoff factor the dissociation of given compound.

1643795600066

So we can write, K_a = \frac{(Ca\times Ca)}{C(1-a)}

or K_a = Ca^2 (\because a << 1)

or a = \sqrt{\frac{K_a}{C}}

Putting values of K a and C in the last result, we get :

a = 0.0655

At equilibrium i = 1 - a + a + a = 1 + a = 1.0655

Now we need to find the moles of the given compound CH 3 CH 2 CHClCOOH.

So, moles =

\frac{10}{122.5} = 0.0816\ mol

Thus, molality of the solution :

= \frac{0.0816\times1000}{250} = 0.3265\ m

Now we will use :

\Delta T_f = i\ K_f\ m

or = 1.065 \times 1.86 \times 0.3265 = 0.6467\ K

Q2.33 19.5 \; g of CH_{2}FCOOH is dissolved in 500\; g of water. The depression in the freezing point of water observed is 1.0^{\circ}C . Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.

Answer :

Firstly we need to calculate molality in order to get vant's hoff factor.

So moles of CH 2 FCOOH :

\frac{19.5}{78} = 0.25

We need to assume volume of solution to be nearly equal to 500 mL. (as 500 g water is present)

Now, we know that : \Delta T_f = i\ K_f\ m

or i = \frac{1}{0.93} = 1.0753

Now for dissociation constant :-

a = i - 1 = 1.0753 - 1 = 0.0753

and, K_a = \frac{Ca^2}{1-a}

Put values of C and a in the above equation, we get :

K_a = 3\times10^{-3}

Q2.34 Vapour pressure of water at 293 \; K is 17.535\; mm\; Hg. Calculate the vapour pressure of water at 293 \; K when 25 \; g of glucose is dissolved in 450 \; g of water.

Answer :

Firstly we will find number of moles of both water and glucose.

Moles of glucose :

= \frac{25}{180} = 0.139\ mol (Molar\ mass\ of\ glucose = 6(12)+12(1)+6(16) = 180\ g\ mol^{-1})

and moles of water :

= \frac{450}{18} = 25\ mol (Molar\ mass\ of\ water = 18\ g\ mol^{-1})

Now,

\frac{p_w^{\circ} - p}{p_w^{\circ}} = \frac{n_g}{n_g + n_w}

or \frac{17.535 - p}{17.535} = \frac{0.139}{0.139+ 25}

or p = 17.44\ mm\ of\ Hg

Thus vapour pressure of water after glucose addition = 17.44 mm of Hg

Q2.35 Henry’s law constant for the molality of methane in benzene at 298\; K is 4.27\times10^{5} mm\ Hg . Calculate the solubility of methane in benzene at 298\; K under 760\; mm\; Hg.

Answer :

We know that : P = k\times C

We are given value of P and k, so C can be found.

C = \frac{760}{4.27\times10^5} = 178\times 10^{-5}

Hence solubility of methane in benzene is 178\times 10^{-5} .

Q2.36 100\; g of liquid A (molar\; mass \; 140\; g\; mol^{-1}) was dissolved in 1000\; g of liquid B (molar\; mass\; 180\; g\; mol^{-1}) . The vapour pressure of pure liquid B was found to be 500 \; Torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure the solution is 475 \; Torr.

Answer :

For calculating partial vapour pressure we need to calculate mole fractions of components.

So number of moles of liquid A :

= \frac{100}{140} = 0.714

and moles of liquid B :

= \frac{1000}{180} = 5.556

Mole fraction of A (x A ) :

= \frac{0.714}{0.714+5.556} = 0.114

and mole fraction of B (x B ) :

= \frac{5.556}{0.714+5.556} = 0.866

Now, P total = P A + P B

or P_{total} = P_A^{\circ}x_A\ + P_B^{\circ}x_B

or 475 = P_A^{\circ}\times0.114\ + 500\times0.886

or P_A^{\circ} = 280.7\ torr

Thus vapour pressure in solution due to A = P_A^{\circ}x_A

= 280.7 \times0.114 = 32\ torr

Q2.37 Vapour pressures of pure acetone and chloroform at 328 \; K are 741.8 \; mm\; Hg and 638.8 \; mm\; Hg respectively. Assuming that they form ideal solution over the entire range of composition, plot ptotal, pchloroform, and pacetone as a function of xacetone. The experimental data observed for different compositions of mixture is:

100 \times x_{acetone} 0 11.8 23.4 36.0 50.8 58.2 64.5 72.1
p_{acetone}/mm\; Hg 0 54.9 110.1 202.4 322.7 405.9 454.1 521.1
p_{chloroform}/mm\; Hg 632.8 548.1 469.4 359.7 257.7 193.6 161.2 120.7
p_{total} 632.8 603 579.5 562.1 580.4 599.5 615.5 64.18

Plot this data also on the same graph paper. Indicate whether it has positive deviation or negative deviation from the ideal solution.

Answer :

15947285044981594728500068

it has negative deviation from the ideal solution.

Q2.38 Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 \; K are 50.71\; mm \; Hg and 32.06\; mm \; Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 \; g toluene.

Answer :

Firstly, we will find the no. of moles of the given compounds.

No. of moles of benzene :

=\frac{80}{78} = 1.026\ mol

and the no. of moles of toluene :

=\frac{100}{92} = 1.087\ mol .

Now we will find mol fraction of both:-

Mole fraction of benzene :-

=\frac{1.026}{1.026+1.087} = 0.486

and mole fraction of toluene :

=1 - 0.486 = 0.514

Now,

P total = P b + P t

or = 50.71\times0.486\ + 32.06\times0.514\ = 24.65 +16.48

or = 41.13\ mm\ of\ Hg

Hence mole fraction of benzene in vapour phase is given by :

= \frac{24.65}{41.13} = 0.60

Q2.39 The air is a mixture of a number of gases. The major components are oxygen and nitrogen with approximate proportion of 20\% is to 79\% by volume at 298 \; K . The water is in equilibrium with air at a pressure of 10 \; atm. At 298 \; K . if the Henry’s law constants for oxygen and nitrogen at 298 \; K are 3.30\times 107 \; mm and 6.51\times 107 \; mm respectively, calculate the composition of these gases in water

Answer :

We have been given that the water is in equilibrium with air at a pressure of 10 atm or 7600 mm of Hg.

So the partial pressure of oxygen :

\frac{20}{100}\times7600 = 1520\ mm\ of\ Hg

and partial pressure of nitrogen :

\frac{79}{100}\times7600 = 6004\ mm\ of\ Hg

Now, by Henry's Law :

P = K_h.x

For oxygen :

x = \frac{1520}{3.30\times10^{7}} = 4.61\times 10^{-5}

For nitrogen :

x = \frac{6004}{6.51\times10^{7}} = 9.22\times 10^{-5}

Hence the mole fraction of nitrogen and oxygen in water is 9.22\times 10^{-5} and 4.61\times 10^{-5} respectively.

Q2.41 Determine the amount of CaCl_{2} (i=2.47) dissolved in 2.5\; litre of water such that its osmotic pressure is 0.75 \; atm at 27^{\circ}C .

Answer :

We know that osmotic pressure :

\Pi = i\ (\frac{n}{v})\ R\ T

or \Pi = i\ (\frac{w}{M\ v})\ R\ T

We have been given the values of osmotic pressure, V, i and T.

So the value of w can be found.

w = \frac{0.75\times111\times2.5}{2.47\times0.0821\times300} (M = 1\times40 + 2\times 35.5 = 111\ g\ mol^{-1})

= 3.42\ g

Hence 3.42 g CaCl 2 is required.

Q2.41 Determine the osmotic pressure of a solution prepared by dissolving 25\; mg of K_{2}SO_{4} in 2\; litre of water at 25^{\circ}C, assuming that it is completely dissociated.

Answer :

Dissociation of K 2 SO 4 is as follows :-

1643795658197 It is clear that 3 ions are produced, so the value of i will be 3.

Molecular weight of K 2 SO 4 = 2(39) + 1(32) + 4(16) = 174u.

\Pi = i\ C\ R\ T

Putting all the values :-

\Pi =\frac{3 \times 25 \times 10-3 \times 0.082 \times 298}{174\times2}

= 5.27\times10^{-3}\ atm

More About Class 12 Chemistry Chapter 2 Solutions

NCERT Class 12 Chemistry chapter 2 solutions mainly discuss questions based on liquid solutions and their properties. The NCERT solutions for Class 12 Chemistry chapter 2 Solutions also cover other questions based on important concepts like types of solutions, Raoult's law and Henry's law, the concentration of solutions in different units, solubility, the vapour pressure of liquid solutions, ideal and non-ideal solutions, colligative properties, determination of molar mass and abnormal molar masses.

Molality(m)=\frac{Number \:of \:moles \:of \:solute}{Weight\:of\:solvent(kg)}
Molarity(N)=\frac{Number \:of \:moles \:of \:solute}{Volume\:of\:solution(kg)}
Normality(N)=\frac{Number \:of \:gram\:equivalent \:of \:solute}{Volume\:of\:solution(kg)}
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook


Topics and Sub-topics of NCERT Class 12 Chemistry Chapter 2 Solutions-

2.1Types of Solutions

2.2 Expressing Concentration of Solutions

2.3 Solubility

2.4 Vapour Pressure of Liquid Solutions

2.5 Ideal and Non-ideal Solutions

2.6 Colligative Properties and Determination of Molar Mass

2.7 Abnormal Molar Masses

This chapter of class 12 NCERT solutions is the second chapter of NCERT Class 12. It basically introduces basic concepts related to concentration, molarity, molality, mole fraction, Raoult's law, henry law, vapour pressure, colligative properties etc. NCERT solutions for Class 12 Chemistry Chapter 2 is an extension of chapter 1 class 11 NCERT also known as some basic concepts of chemistry. Class 12 NCERT solutions is very useful in the subsequent chapters like thermodynamics and Equilibrium etc. Ch 2 Chemistry Class 12 is very easy if basic concepts are understood well. Students can score decent marks in this chapter as most of the questions are form colligative properties and vapour pressure concepts which are easy to comprehend in the examination. Apart from NCERT, students can refer class notes for Chemistry Class 12 Chapter 2 to revise and score well in the final board examination as well as competitive exams.

Class 12 NCERT solutions has good amount of weightage in exams like NEET and JEE as well. Class 12 Chemistry Chapter 2 solutions is must read for the 12th class students. Most of the concepts like Molarity, molality, mole fraction, percentage composition etc. have been discussed in class 11 only, hence it is not very difficult to grasp the subsequent topics Henrys law, Colligative properties. Hence it is generally recommended to study class 11 chapters well before entering class 12th as heavy portion of syllabus is interlinked. Ch 2 Chemistry Class 12 solutions will take 8-10 hours to complete if all the concepts of 11th class are well read.

NCERT Exemplar Class 12 Solutions

NCERT solutions for class 12 chemistry

SAT® | CollegeBoard

Registeration closing on 19th Apr for SAT® | One Test-Many Universities | 90% discount on registrations fee | Free Practice | Multiple Attempts | no penalty for guessing

TOEFL ® Registrations 2024

Thinking of Studying Abroad? Think the TOEFL® test. Save 10% on your TOEFL exam with ApplyShop gift cards!

NCERT solutions for class 12 subject wise

Benefits of NCERT Solutions for Class 12 Chemistry Chapter 2 Solutions

  • Hope you have understood well with the help of the free NCERT class 12 Chemistry chapter 2 solutions provided here.
  • After completing NCERT solutions for class 12 chemistry chapter 2 Solutions, students will be able to differentiate between the types of solutions characteristics of ideal and non-ideal solutions, define solubility and colligative properties, understand abnormal molar mass.
  • NCERT class 12 Chemistry chapter 2 pdf which you read here will also help you in building your concepts as well as a strong base in the subject. These will also help you in various competitive exams.
  • With the help of these NCERT class 12 Chemistry chapter 2 solutions pdf download, you will be able to write answers well.

Also Check NCERT Books and NCERT Syllabus here:

Happy Learning!!

Frequently Asked Question (FAQs)

1. What are the important topics of this chapter?
  • Henry’s law  
  • Solubility of gases in liquids 
  • Colligative properties 
  • Raoult's law  
  • Relative lowering of vapour pressure 
  • Elevation of boiling point 
  • Osmotic pressure 
  • Abnormal molecular mass 
  • Van't Hoff factor
2. Where can I find complete solutions of NCERT syllabus Class 12 Chemistry?
3. What is the weightage of NCERT book Class 12 Chemistry chapter 2 in JEE Mains?

4 marks questions can be expected. Practice JEE Main previous year papers to understand the question type asked.

4. What is the weightage of NCERT class 12 Chemistry chapter 2 in NEET?

Weightage of solutions is 5% . For good score follow NCERT textbook and solve NEET previous year papers.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello aspirant,

The purpose of graphic design extends beyond the brand's look. Nevertheless, by conveying what the brand stands for, it significantly aids in the development of a sense of understanding between a company and its audience. The future in the field of graphic designing is very promising.

There are various courses available for graphic designing. To know more information about these courses and much more details, you can visit our website by clicking on the link given below.

https://www.careers360.com/courses/graphic-designing-course

Thank you

Hope this information helps you.

hello,

Yes you can appear for the compartment paper again since CBSE gives three chances to a candidate to clear his/her exams so you still have two more attempts. However, you can appear for your improvement paper for all subjects but you cannot appear for the ones in which you have failed.

I hope this was helpful!

Good Luck

Hello dear,

If you was not able to clear 1st compartment and now you giving second compartment so YES, you can go for your improvement exam next year but if a student receives an improvement, they are given the opportunity to retake the boards as a private candidate the following year, but there are some requirements. First, the student must pass all of their subjects; if they received a compartment in any subject, they must then pass the compartment exam before being eligible for the improvement.


As you can registered yourself as private candidate for giving your improvement exam of 12 standard CBSE(Central Board of Secondary Education).For that you have to wait for a whole year which is bit difficult for you.


Positive side of waiting for whole year is you have a whole year to preparing yourself for your examination. You have no distraction or something which may causes your failure in the exams. In whole year you have to stay focused on your 12 standard examination for doing well in it. By this you get a highest marks as a comparison of others.


Believe in Yourself! You can make anything happen


All the very best.

Hello Student,

I appreciate your Interest in education. See the improvement is not restricted to one subject or multiple subjects  and  we cannot say if improvement in one subject in one year leads to improvement in more subjects in coming year.

You just need to have a revision of all subjects what you have completed in the school. have a revision and practice of subjects and concepts helps you better.

All the best.

Hi,

You just need to give the exams for the concerned two subjects in which you have got RT. There is no need to give exam for all of your subjects, you can just fill the form for the two subjects only.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top