Get Answers to all your Questions

header-bg qa

If a and b are the non -zero distinct roots of x^2+ax+b=0 , then the least value of x^2+ax+b is

Answers (1)

best_answer

Solution:  We have    a+b=-a ,   ab=b

               As     b
eq 0   We get    a=1

             	herefore             1+b=-1Rightarrow b=-2

            Thus ,       x^2+ax+b=x^2+x-2

                             =(x+1/2)^2-9/4geq -9/4

            	herefore      Least value of x^2+ax+b  is -9/4 which is attained at

                     x=-1/2.

 

Posted by

Deependra Verma

View full answer